
CS240: Programming in C

Lecture 7: Multiple Arrays.
Pointers and Arrays.

Cristina Nita-Rotaru Lecture 7/ Fall 2013 1

Multiple arrays

l  int m[2][3]; /* 2 rows 3 cols*/
l  int k;

l  m [i][j] = k;
l  m[i][j] = 2;

l  int m[2][3] = {{1,1,1}, {1,1,1}};

Cristina Nita-Rotaru Lecture 7/ Fall 2013 2

Multiple arrays

l  What if I want to store an array of
names?

l  char name[3][12];

l  Let’s say that the names are “John”,
‘Dan’ and ‘Christopher’

l  Can I store this in a more efficient way?

Cristina Nita-Rotaru Lecture 7/ Fall 2013 3

String and arrays

What does this mean?

char *s[3] = {”John", ”Dan",
”Christopher"};

It declares an array of pointers to char, and

initializes each pointer with the address
of the three constant strings

Cristina Nita-Rotaru Lecture 7/ Fall 2013 4

Pointers: reminder

l  char c; is a declaration of a character
l  char *ptr; is a declaration of an address

that points to a character

ptr = &c;
&c means the address of c
*p = ‘m’;
*p means what is located at the address

specified by p

Cristina Nita-Rotaru Lecture 7/ Fall 2013 5

Name of an array vs pointer

char a[10];
a is by convention also &a[0]
char *p;
Name of an array is not a variable
p = a; ALLOWED
p++; ALLOWED
HOWEVER, it is not allowed
a = p;
a++;

Cristina Nita-Rotaru Lecture 7/ Fall 2013 6

int array[10];

int *p = &array[0];

p+i means the ith element in the array

regardless of the type stored by the
array

Cristina Nita-Rotaru Lecture 7/ Fall 2013 7

Let’s go back to the previous example

char *p = “John”;
Assigns the address of the string “John”

and assigns to p the address of the
constant string “John” . No string copy
involved

char a[] = “John”;
This allocates the space for a to hold 5

characters (includes the ‘\0’).

Cristina Nita-Rotaru Lecture 7/ Fall 2013 8

Pointers of different types

#include <stdio.h>

int main() {
 int *p_int = NULL;
 char *p_char = NULL;
 char c;

 p_char = &c;

 p_int = p_char; /* generates a warning */

 p_int = (int*) p_char;

 return 0;
}

Cristina Nita-Rotaru Lecture 7/ Fall 2013 9

Pointers, operators, precedence

*++p;
++ applies before * , first the pointer is

incremented, then dereferenced

Cristina Nita-Rotaru Lecture 7/ Fall 2013 10

Passing a multi-dimensional array to
a function
If a two-dimensional array is passed, the

number of columns also needs to be
passed, number of rows is irrelevant

int my_function(int matrix[12][31]);

int my_function(int matrix[][31]);

Cristina Nita-Rotaru Lecture 7/ Fall 2013 11

Pointer to pointer

int i = 5;
int *p = &i;
int **p_p = &p;

Think about it as *p_p is an int*, that is,
p_p is a pointer to pointer to int

Cristina Nita-Rotaru Lecture 7/ Fall 2013 12

5

i p p_p

Pointer to pointer and arrays

char *s[3] = {”John", ”Dan",
”Christopher"};

s is a char **

char **p = s;

 Cristina Nita-Rotaru Lecture 7/ Fall 2013 13

Passing arguments to programs

% cat file.txt
% ls –l
l  These commands are frequently

implemented as C programs
l  Something like "-l" is usually called an

option, which is still a command line
argument

l  How are the arguments passed to your
C program?

Cristina Nita-Rotaru Lecture 8/ Fall 2013 14

Command line arguments

l  A full prototype of the main function is:

int main(int argc, char **argv);

§  argc - number of command line arguments,
including the program name

§  argv - an array of the arguments, each of which
is a string (i.e., array of chars)

§  argc argv[0] argv[1] argv[2]

Cristina Nita-Rotaru Lecture 8/ Fall 2013 15

argv

l  argv is char **
l  First elements in argv is the name of the

program.

for (i=0; i < argc; i++) {
 char *p = *(argv+i);

 printf("Argument %d : %s\n", i, p);
}

Cristina Nita-Rotaru Lecture 8/ Fall 2013 16

Exercise

l  Write a small program where
you free something twice and
observe the behavior

l  Write a small program where
you don’t free the allocated
memory and observe the
behavior

Cristina Nita-Rotaru Lecture 8/ Fall 2013 17

Readings for This Lecture

K&R Chapter 5, up to 5.10

Cristina Nita-Rotaru Lecture 7/ Fall 2013 18

