
CS240: Programming in C

Lecture 3: Data types: basic
types, pointers, arrays,

strings.

Cristina Nita-Rotaru Lecture 3/ Fall 2013 1

What are types?

l  Data types are sets of values along with
operations that manipulate them

l  Values must be mapped to data types
provided by the hardware and operations
compiled to sequences of hardware
instructions

l  Example: integers in C are made up of
the set of values ..., -1, 0, 1, 2, ... along
with operations such as addition,
subtraction, multiplication, division...

Cristina Nita-Rotaru Lecture 3/ Fall 2013 2

Types in C

l  Convenient way of reasoning about
memory layout

l  All values (regardless of their type)
have a common representation as a
sequence of bytes in memory

l  Primitive type conversions are always
legal

Cristina Nita-Rotaru Lecture 3/ Fall 2013 3

Words

l  Hardware has a `Word size` used to
hold integers and addresses
§  Different words sizes (integral number of bytes)

are supported
§  Modern general purpose computers usually use

32 or 64 bits

l  The size of address words defines the
maximum amount of memory that can be
manipulated by a program
§  32-bit words => can address 4GB of data
§  64-bit words => could address up to 1.8 x 1019

 Cristina Nita-Rotaru Lecture 3/ Fall 2013 4

Addresses

l  Addresses specify byte location in computer

memory, i.e. address of first byte in a word
l  Address of following words differ

by 4 (32-bit) and 8 (64-bit)

Cristina Nita-Rotaru Lecture 3/ Fall 2013 5

…

8 bits = byte (28 = 256 different values)

10101101
0xbffffaab

Types representation

l  Basic types
§  int - used for integer numbers
§  float - used for floating point numbers
§  double - used for large floating point numbers
§  char - used for characters
§  void - used for functions without parameters or return

value
§  enum - used for enumerations

l  Composite types
§  pointers to other types
§  functions with arguments types and a return type
§  arrays of other types
§  structs with fields of other types
§  unions of several types

Cristina Nita-Rotaru Lecture 3/ Fall 2013 6

Qualifiers, modifiers, storage

l  Type qualifiers
§  short - decrease storage size
§  long - increase storage size
§  signed - request signed representation
§  unsigned - request unsigned representation

l  Type modifiers
§  volatile - value may change without being written to by

the program
§  const - value not expected to change

l  Storage class
§  static - variable that are global to the program
§  extern - variables that are declared in another file

Cristina Nita-Rotaru Lecture 3/ Fall 2013 7

Byte order

l  Different systems store multibyte values
(for example int) in different ways.
§  HP, Motorola 68000, and SUN systems store

multibyte values in Big Endian order: stores the
high-order byte at the starting address

§  Intel 80x86 systems store them in Little Endian
order: stores the low-order byte at the starting
address.

l  Data is interpreted differently on
different hosts.

l  Where it shows up:
§  Network protocols
§  Binary file created on a computer is read on

another computer with different endianness.
 Cristina Nita-Rotaru Lecture 3/ Fall 2013 8

Sizes

Cristina Nita-Rotaru Lecture 3/ Fall 2013 9

Type Range (32-bits) Size in bytes
signed char −128 to +127 1
unsigned char 0 to +255 1
signed short int −32768 to +32767 2
unsigned short int 0 to +65535 2
signed int −2147483648 to +2147483647 4
unsigned int 0 to +4294967295 4
signed long int −2147483648 to +2147483647 4 or 8
unsigned long int 0 to +4294967295 4 or 8
signed long long int −9223372036854775808 to +9223372036854775807 8
unsigned long long int 0 to +18446744073709551615 8
Float 1×10-37 to 1×1037 4
Double 1×10−308 to 1×10308 8
long double 1×10-308 to 1×10308 8, 12, or 16

sizeof(x) returns the size in bytes.

Characters representation

l  ASCII code (American Standard Code for
Information Interchange): defines 128
character codes (from 0 to 127),

l  In addition to the 128 standard ASCII codes
there are other 128 that are known as
extended ASCII, and that are platform-
dependent.

l  Examples:
 The code for ‘A’ is 65
 The code for ‘a’ is 97
 The code for ‘0’ is 48

Cristina Nita-Rotaru Lecture 3/ Fall 2013 10

Understanding types in C matters …

l  Incorrect use may result in bugs
§  There are implicit conversions that take place

and they may result in truncation
§  Some data types are not interpreted the same

way on different platforms, they are machine-
dependent
• sizeof(x) returns the size in bytes of the object x

(either a variable or a type) on the current
architecture

l  Ineffective use may result in higher cost
§  Storage, performance

Cristina Nita-Rotaru Lecture 3/ Fall 2013 11

What will this program output?

#include <stdio.h>
int main() {
 char c = -5;

 unsigned char uc = -5;

 printf(”%d %d \n", c, uc);

 return 0;

}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 12

Printf format

c Character
d or i Signed decimal integer
f Decimal floating point
s String of characters
u Unsigned decimal integer
x Unsigned hexadecimal integer
p Pointer address

NOTE: read printf man pages for additional formats

Cristina Nita-Rotaru Lecture 3/ Fall 2013 13

What will this program output?

#include <stdio.h>
int main() {
 char c = ‘a’;

 printf(“%c %d %x \n", c, c, c);

 return 0;

}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 14

#include <stdio.h>

int main() {
 char c;
 short int s_i;
 long int l_i;
 int i;
 float f;

 double d;
 long double l_d;

 printf(" Size of char: %d (bytes)\n", sizeof(c));
 printf(" Size of short: %d (bytes)\n", sizeof(s_i));
 printf(" Size of long: %d (bytes)\n", sizeof(l_i));

 printf(" Size of int: %d (bytes)\n", sizeof(i));
 printf(" Size of float: %d (bytes)\n", sizeof(f));
 printf(" Size of double: %d (bytes)\n", sizeof(d));
 printf(" Size of long double: %d (bytes)\n", sizeof(l_d));

 return 0;
}

 Cristina Nita-Rotaru Lecture 3/ Fall 2013 15

Implicit conversions: What can go wrong?

#include <stdio.h>
int main () {
 short s = 9;
 long l = 32770;
 printf("%d\n", s);
 s = l;
 printf("%d\n", s);

 return 0;
}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 16

short can store -32768 to 32767

Pointers

l  The address of a location in memory is also a type
based on what is stored at that memory location
§  char * is “a pointer to char” or the address of memory where a

char is stored
§  int * points to a location in memory where a int is stored
§  float * points to a location in memory where a float is stored

l  We can do operations with this addresses
l  The size of an address is platform dependent.

Cristina Nita-Rotaru Lecture 3/ Fall 2013 17

… 10101101
0xbffffaab

& and *

l  Given a variable v
 &v means the address of v

l  Given a pointer ptr
*ptr means the value stored at the

address specified by ptr

Cristina Nita-Rotaru Lecture 3/ Fall 2013 18

#include <stdio.h>

int main() {
 char c;
 char *c_ptr = &c;

 printf(“Size of char *: %d (bytes)\n", sizeof(c_ptr));
 printf(“Address of c is: %p \n", &c);
 printf(“Value of c_ptr is: %p \n", c_ptr);

 printf(“Value of c is: %c \n", c);
 printf(“Value of *c_ptr is:%c \n", *c_ptr);

 return 0;
}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 19

Arrays of characters

char c[10];

for (i=0; i< 10; i++) {
 printf(“%c\n”, c);

}

&c[0] or c (the name of the array) represents the start

memory address where the array is stored in the memory
char *p = &c[0];

Cristina Nita-Rotaru Lecture 3/ Fall 2013 20

First element of the array
starts at index 0, in this

case c[0]

Arrays of characters
char c[10];
char *p = &c[0];

for (i=0; i < 10; i++) {
 c[i] = ‘a’;
}
c[5] = ‘b’;

What’s the address of c[5]? It is p+5

Cristina Nita-Rotaru Lecture 3/ Fall 2013 21

Pointer vs. what’s stored at the
address indicated by a pointer
#include <stdio.h>

int main() {

 char c;
 char * c_ptr = &c;
 char array[5];

 array[2] = 'b';
 c_ptr = array;

 printf("Address where array starts: %p\n", array);
 printf("Value of variable c_ptr: %p\n", c_ptr);
 printf("Value stored at the address c_ptr+2: %c\n", *(c_ptr+2));

 return 0;

}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 22

Strings

l  In C a string is stored as an array of
characters, terminated with null, 0, hex 00 or
‘\0’

l  The array has to have space for null
l  Function strlen returns the length of the string

excluding the string terminator

Cristina Nita-Rotaru Lecture 3/ Fall 2013 23

ALWAYS MAKE SURE YOU DON’T
GO BEYOND THE SIZE OF THE

ARRAY – 1; the last item in the array
should be the null string terminator

Symbolic constants: #define

l  Followed by the name of the macro and
the token sequence it abbreviates

l  By convention, macro names are written
in uppercase.

l  There is no restriction on what can go in
a macro body provided it decomposes
into valid preprocessing tokens.

l  If the expansion of a macro contains its
name, it is not expanded again

l  #define NO 100
Cristina Nita-Rotaru Lecture 3/ Fall 2013 24

#define vs const modifier

l  Declaring some variable with const
means that its value can not be modified

l  const int no = 100;
l  Alternative is to use #define
l  #define NO 100

l  Is there any difference?

Cristina Nita-Rotaru Lecture 3/ Fall 2013 25

#include<stdio.h>

const int MAX=10;

int main() {
 char s[MAX];
 int i;

 s[MAX-1] = 0;

 for(i=0; i<MAX-1 i++) {
 s[i] = ‘a’;
 }

 s[0] = ‘b’;

 printf("%s\n", s);

 return 0;
}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 26

What’s wrong with this code?

Consider that we have the following declaration

const int MAX=10;

int main() {
char s[MAX];

 ….

What’s wrong in each of the following:

(1) s[MAX] = 0;

(2)
 for(i=1; i<=MAX; i++) {
 s[i] = ‘a’;

 }
 printf("%s\n", s);

(3) MAX = 12;

Cristina Nita-Rotaru Lecture 3/ Fall 2013 27

Strlen vs sizeof
include<stdio.h>
#include<string.h>

const int MAX = 10;

int main() {
 char s[MAX];
 int len, size, i;

 s[0] = 'a';
 s[1] = '\0';

 len = strlen(s);
 size = sizeof(s);

 printf("len: %d characters, size: %d bytes\n", len, size);
 printf("The content of array s is: ");
 for(i=0; i< MAX; i++) {
 printf("%X ", s[i]);

 }

 printf("\n");

 return 0;
}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 28

Operations with strings

l  strlen
l  strncpy vs strcpy
l  strncmp vs strcmp
l  /usr/include/string.h

int strlen(char s[]) {
 int i = 0;
 while(s[i] != ‘\0’)
 ++i;

 return i;
}

Cristina Nita-Rotaru Lecture 3/ Fall 2013 29

Good coding habits

l  Use const and or define for
SIZES and avoid using
numbers in the code

l  Always check your arrays,
that they start at 0 and end
at SIZE-1

l  Allow space for null in
strings

Cristina Nita-Rotaru Lecture 3/ Fall 2013 30

Boolean

l  Std 89 the first C standard does not
define boolean

l  It I supported in standard std 99.
l  It is not really a needed type and that’s

why was not included in the original
design

l  #include <stdbool.h> type is _Bool

Cristina Nita-Rotaru Lecture 3/ Fall 2013 31

Readings for this lecture

K&R Chapter 1 and 2

READ man for printf

http://en.wikipedia.org/wiki/

Word_(computer_architecture)

READ string related

functions

Cristina Nita-Rotaru Lecture 3/ Fall 2013 32

