
Cristina Nita-Rotaru Lecture 2/ Fall 2013 1

CS240: Programming in C

Lecture 2: Hello World!

Introducing C

l  High-level programming
language

l  Developed between 1969 and
1973 by Dennis Ritchie at the
Bell Labs for use on UNIX OS
§  Dennis Ritchie received the Turing

Award in 1983 with Ken Thomson
for creating UNIX

l  First standard for C, 1989, c89
l  Current standard is c11,

replacing c99

Cristina Nita-Rotaru Lecture 1/ Fall 2013 2

C at a glance: Types and functions

l  Types (set of data with predefined
characteristics):
§  Basic: Characters, integers, floating points,

pointers
§  Hierarchies: structures, unions

l  Control-flow expressions: if-else, switch,
while, do, for, break, continue, goto

l  Functions (a piece of code that pefroms
operations on some input, returns an output
and is reusable):
§  Can return basic types, structures, or pointers
§  Can be called recursively

Cristina Nita-Rotaru Lecture 1/ Fall 2013 3

C at a Glance: Variables

l  Symbolic name for information
l  Can be

§  internal to a function
§  external to a function

• visible within the file
• across files

l  Can be passed to functions by value or by
reference

l  Can be declared in a block-structure mode
which limits its visibility to the block

l  Can have memory if declared static
Cristina Nita-Rotaru Lecture 1/ Fall 2013 4

C at a Glance: Preprocessing

l  Macros substitutions
§  Macro: brief abbreviations for longer

constructs

l  Inclusion of other files
§  Usually header files

l  Conditional compilation
§  Support for different architectures
§  Unique inclusion of a file
§  Support for debug

Cristina Nita-Rotaru Lecture 1/ Fall 2013 5

C at a Glance: libc

l  No direct access to composite objects
such as strings, sets, lists, arrays

l  No storage facilities other than static and
stack

l  No input/output facilities

l  Developers get access to some of
these because of a library made
available with the language, libc

Cristina Nita-Rotaru Lecture 1/ Fall 2013 6

How is C different from Java?

l  Java is platform independent, compiled
once and then runs on different
platforms without being recompiled
§  There is a caveat … you need a JVM

l  C is not platform independent, but the
code can be written to be portable on
different platforms, needs to be
recompiled

Cristina Nita-Rotaru Lecture 2/ Fall 2013 7

Cristina Nita-Rotaru Lecture 2/ Fall 2013 8

Software portability

l  Ideal of portable program: can be
moved with little or no extra investment
of effort to a different platform/computer
that differs from the one on which the
program was originally developed

l  Reality: Writing a program in Standard C
does not guarantee that it will be
portable (because of differences among
C implementations), but close enough

Cristina Nita-Rotaru Lecture 2/ Fall 2013 9

Some portability issues

l  Representation issues
§  Endianess
§  Integer representation
§  Size
§  Alignment

l  Standard libraries
§  Sometimes the functions that have the same

functionality have different names/parameters on
different platforms;

§  Include the right header files
§  Link with the right libraries

Source code

l  Source files: file_name.c
§ Contain declarations and/or definitions of

functions
l  Header files: file_name.h

§ Contain declarations and macro definitions
to be shared between several source files

§ C pre-processor transforms the program
before compilation: replacing macros and
including files
• It is called automatically by the compiler

Cristina Nita-Rotaru Lecture 2/ Fall 2013 10

Object code

l  Object code:
§  Relocatable format machine code
§  Usually not directly executable

l  Library:
§  File containing several object files used as a single entity in

the linking phase of a program
§  It is indexed, so it is easy to find symbols (functions,

variables) in them

l  Executable: directly executable, launches a
program, runs in its own space, contains a main
§  ELF for Linux
§  Mach-O for Mac
§  PE for Linux

Cristina Nita-Rotaru Lecture 2/ Fall 2013 11

Cristina Nita-Rotaru Lecture 2/ Fall 2013 12

From source code to executable code

Source Code 1 Source Code N

Compiler

Linker

Object Code 1 Object Code N

…

…

Executable Code

1

1

N

N

Cristina Nita-Rotaru Lecture 2/ Fall 2013 13

Static libraries

l  Libraries that are linked into the program
during the linking phase of compilation

l  Each process has its own copy of the static
libraries is using, loaded in memory

l  Executable files linked with static libraries are
bigger

Examples:
 Unix: XXX.a

 Mac: XXX.a
 Windows: XXX.lib

Cristina Nita-Rotaru Lecture 2/ Fall 2013 14

Shared (dynamic) libraries

l  Linked into the program in two stages
§  Compilation: linker verifies that all the symbols

(functions, variables) required by the program, are
either linked into the program, or in one of its
shared libraries. The object files from the dynamic
library are not inserted into the executable file

§  Runtime: loader checks out which shared
libraries were linked with the program, loads them
to memory, and attaches them to the copy of the
program in memory

l  Only one copy of the library is stored in memory at
any given time

l  Use less memory to run our programs, the
executable files are much smaller

Linking

l  The linker needs to know how to find the
specified libraries

l  Default path usually /usr/lib
l  Or use –L option to specify directory
l  -I option needed for include files

l  Windows: xxx.dll
l  Mac: xxx.dylib
l  Linux: xxx.so

Cristina Nita-Rotaru Lecture 2/ Fall 2013 15

Loader

l  Loader needs to know how to find those
dynamic libraries

l  Environment variables
 LD_LIBRARY_PATH

l  Loader looks in LD_LIBRARY_PATH
before the compiled-in search path(s),
and the standard locations (typically /
lib, /usr/lib, …)

Cristina Nita-Rotaru Lecture 2/ Fall 2013 16

Cristina Nita-Rotaru Lecture 2/ Fall 2013 17

libc

l  C Standard library – is an interface standard
which describes a set of functions and their
prototype used to implement common
operations

l  Libc – is the implementation of the C
Standard library on UNIX systems

libc is linked in by default as a
shared library

Let’s speak C – Hello World

#include <stdio.h>
int main() {
 /* every program must have a main */
 printf("Hello world!\n");

 return 0;
}

gcc –c hello.c means compile
gcc –o hello hello.o means link
OR
gcc hello.c compile and link

Cristina Nita-Rotaru Lecture 2/ Fall 2013 18

Main function

l  Every C program has to have a main
l  It has to be declared int main for portability

§  Returning 0 means the program exited OK
§  Return value is interpreted by the operating system
§  Without a return statement, undefined value is

returned

l  The complete signature for main()
int main(int argc, const char* argv[])

Cristina Nita-Rotaru Lecture 2/ Fall 2013 19

Use define

#include <stdio.h>
#define HELLO "Hello World!\n”

int main() {
 printf(HELLO);

 return 0;
}

Cristina Nita-Rotaru Lecture 2/ Fall 2013 20

More C…

#include <stdio.h>

int main() {
 int c;

 c = getchar();
 while(c != EOF) {
 putchar(c);

 c = getchar();
 }
 return 0;
}

Cristina Nita-Rotaru Lecture 2/ Fall 2013 21

Practice : Exam questions

l  Remember that at the exam you will not have a
computer so try to answer these questions first with
pen and paper and then try it by running the program

l  How would the screen look like if you
type enter abc enter

l  Same question considering that line c =
getchar(); was removed from the while
loop.

Cristina Nita-Rotaru Lecture 2/ Fall 2013 22

Practice: Learn from mistakes

l  Take the hello program and misspell
the name of printf, observe what
happens when you compile

l  Remove the include file, observe what
happens when you compile

Cristina Nita-Rotaru Lecture 2/ Fall 2013 23

Cristina Nita-Rotaru Lecture 2/ Fall 2013 24

Making our coding life easier…

l  Complex projects have many source and
header files compiled in object files and then
linked in an executable, sometime linking
with other external libraries.
§  How to compile/link in an organized and efficient way?

l  make utility
§  Determines which pieces of a large program need to be

recompiled and issues commands to recompile them.
§  Can be used with any programming language (not only C)

whose compiler can be run with a shell command.
§  Not limited to programs: documentation, distribution.

Cristina Nita-Rotaru Lecture 2/ Fall 2013 25

Running make

l  Uses a file, the default name is ‘’Makefile`` that
describes the relationships among files in the
program and provides commands for updating each
file.

 make
 make –f Makefile_name

l  make uses the Makefile data base and the last-
modification times of the files to decide which of the
files need to be updated. For each of
those files, it issues the commands recorded in the
data base.

Cristina Nita-Rotaru Lecture 2/ Fall 2013 26

An example of a Makefile

edit : main.o command.o display.o utils.o
 gcc -o edit main.o command.o display.o \
 utils.o

main.o : main.c defs.h
 gcc -c main.c

command.o : command.c defs.h command.h
 gcc -c command.c

display.o : display.c defs.h
 gcc -c display.c

utils.o : utils.c defs.h
 gcc -c utils.c

clean :
 rm edit main.o command.o display.o utils.o

•  C files: main.c, command.c, display.c, utils.c
•  H files: defs.h, command.h This is a tab

Cristina Nita-Rotaru Lecture 2/ Fall 2013 27

Variables and implicit rules

l  It is not necessary to spell out the commands for
compiling the individual C source files, `make' can
figure them out: it has an "implicit rule" for updating a
`.o' file from a correspondingly named
`.c' file using a `gcc -c' command.

l  To simplify writing make files, one can define
variables:

OBJS = main.o command.o display.o utils.o
…
edit : $(OBJS)

 gcc -o edit $(OBJS)

Example: Makefile for hello

all: hello

hello : helloworld.o
 gcc -o hello helloworld.o

helloworld.o : helloworld.c
 gcc -c helloworld.c

clean:
 rm hello helloworld.o

 Cristina Nita-Rotaru Lecture 2/ Fall 2013 28

Cristina Nita-Rotaru Lecture 2/ Fall 2013 29

Readings for this lecture

K&R Chapter 1 and 2

