
CS240: Programming in C

Lecture 17: Processes,
Pipes, and Signals

Cristina Nita-Rotaru Lecture 17/ Fall 2013 1

Processes in UNIX

l  UNIX identifies processes via a unique
Process ID
§ Each process also knows its parent

process ID since each process is
created from a parent process.

§ Root process is the ‘init’ process
l  getpid and getppid functions to return

process ID (PID) and parent process ID
(PPID)

Cristina Nita-Rotaru Lecture 17/ Fall 2013 2

OS kernel

Process 0
(sched)

Process 1
(init)

getty getty getty

login

csh

login

bash

Unix Start Up Processes

Cristina Nita-Rotaru Lecture 17/ Fall 2013 3

Process ID

#include <stdio.h>
#include <unistd.h>

int main () {

 printf(“I am process %ld\n”, (long)getpid());
 printf(“My parent id is %ld\n”, (long)getppid());

 return 0;

}

Cristina Nita-Rotaru Lecture 17/ Fall 2013 4

Creating Processes

l  Fork
§ Creates a new process, called child,

by duplicating the calling process
called parent

l  Exec
§ Replacing process’s program with the

one inside the exec() call.

Cristina Nita-Rotaru Lecture 17/ Fall 2013 5

fork

#include <unistd.h>
pid_t fork(void);

l  Creates a new process, called child, by
duplicating the calling process called parent

l  On success, in child it returns 0 and in the parent
returns the PID of the child process

l  On failure, in parent returns -1 and and errno is
set appropriately; no child process is created

l  Child can always obtain id of the parent with
getppid.

Cristina Nita-Rotaru Lecture 17/ Fall 2013 6

Fork Details

l  Duplication means:
§  Child gets exact copy of code, stack, file

descriptors, heap, global variables, and
program counter

§  BUT new pid

l  Execution of parent and child:
§  In parallel
§  Parent waits for the child before finishing
§  After fork, scheduler dictates if child starts

executing before parent or vice versa

Cristina Nita-Rotaru Lecture 17/ Fall 2013 7

Fork Example

#include <stdio.h>
#include <unistd.h>

int main() {
 pid_t x;
 x = fork();
 if (x < 0) {

 perror(“Fork failed ”);
 exit(EXIT_FAILURE);

 }
 else if(x == 0) { /* child */
 printf(“I am the child: fork returned %ld\n”, (long) x);
 printf(“Child and my ID is : %ld\n”, (long)getpid());
 }
 else {
 printf(“I am the parent: fork returned %ld\n", (long) x);
 }
 return 0;
} Cristina Nita-Rotaru Lecture 17/ Fall 2013 8

exec

#include <unistd.h>
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg , ...,
char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *filename, char *const argv [],
char *const envp[]);

l  Family of functions for replacing process’s program with
the one inside the exec() call.

Cristina Nita-Rotaru Lecture 17/ Fall 2013 9

Exec example

#include <unistd.h>

int main () {

 execl("/bin/ls", "ls", NULL);

 return 0;
}

Cristina Nita-Rotaru Lecture 17/ Fall 2013 10

exec vs system

l  system: creates a child process and
invokes another shell
§  the return value tells whether the command

shell was invoked, but provides no information
about the command itself.

l  exec: does not create a child process,
but replaces the current process

Cristina Nita-Rotaru Lecture 17/ Fall 2013 11

Process Termination

l  A process can terminate voluntary or
involuntary

l  Voluntary
§ Normal termination: exit(0)
§  Error termination exit(2) or abort()

l  Involuntary:
§  Fatal error: divide by 0, segmentation fault
§  Killed by another process kill(procID)

Cristina Nita-Rotaru Lecture 17/ Fall 2013 12

What happens when a process
terminates?

l  All open files are flushed and closed
l  Temporary files are deleted
l  Resources are de-allocated
l  Parent process is notified via a signal
l  Exit status is available to parent via

wait()

Cristina Nita-Rotaru Lecture 17/ Fall 2013 13

Wait and waitpid

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *status, int opts)

l  wait()
§  Makes the parent process to wait (block)

until some child finishes
§  Returns child’s pid and exit status to parent

l  waitpid()
§  Makes the parent to wait (block) for a

specific child

Cristina Nita-Rotaru Lecture 17/ Fall 2013 14

Interprocess Communication

l  Pipe sets up a communication channel between two
(related) processes, usually child - parent

Cristina Nita-Rotaru Lecture 17/ Fall 2013 15

pipe

#include <unistd.h>
int pipe(int pipefd[2]);

l  Creates a pipe, it is UNIDIRECTIONAL or half-duplex
l  pipefd is used to return two file descriptors referring to

the ends of the pipe.
§  pipefd[0] refers to the read end of the pipe.
§  pipefd[1] refers to the write end of the pipe.

l  Data written to the write end of the pipe is buffered by
the kernel until it is read from the read end of the pipe.

l  Returns 0 on success and -1 on error

Cristina Nita-Rotaru Lecture 17/ Fall 2013 16

Pipe Example
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#define BUF_SIZE 1024

int main(){
 char child_recv[BUF_SIZE] ;
 char *parent_send = "Hello world!";
 int fd[2];

 pipe(fd); /* create pipe */
 if (fork() != 0) { /* parent */

 close(fd[0]); /* parent will write */
 printf("Sending to child: %s\n", parent_send);
 write(fd[1], parent_send, strlen(parent_send) + 1) ;
 }
 else { /* child */

 close(fd[1]); /* child will read */
 read(fd[0], child_recv, BUF_SIZE) ;
 printf("Received from parent: %s\n", child_recv) ;
 }

 return 0;
}

Cristina Nita-Rotaru Lecture 17/ Fall 2013 17

Specifying how the Pipe is Used

l  If a process wants to use the pipe to write should
close the read fd

l  If a process wants to used to pipe to read should
close the write fd

l  If both are open in a process, that process can both
read and write

l  If write is still open at the reading end, the reader
does not see EOF because the OS assumes that a
write might occur (from the reader)

l  If writer overfills the buffer and there is a read open
(even if it is the same process writing) the write will
block

l  Closing ends makes the logic easier and cleaner.
Cristina Nita-Rotaru 18 Lecture 17/ Fall 2013

Reading/Writing from a Pipe

l  The data is handled in a first-in, first-out (FIFO)
order.

l  Pipes do not allow file positioning. Both reading
and writing operations happen sequentially;
reading from the beginning of the file and
writing at the end.

l  Reading or writing pipe data is atomic if the size
of data written is not greater than PIPE_BUF.

l  Once PIPE_BUF bytes have been written,
further writes will block until some bytes are
read.

Cristina Nita-Rotaru Lecture 17/ Fall 2013 19

Reading/Writing from a One-end Pipe

l  If we read from a pipe whose write end
has been closed, after all the data has
been read, read function returns 0 to
indicate the end of file.

l  If we write to a pipe whose read end has
been closed, the signal SIGPIPE is
generated. If we either ignore the signal
or catch it and return from the signal
handler, write returns an error with errno
set to EPIPE

Cristina Nita-Rotaru Lecture 17/ Fall 2013 20

Signals

l  Signal: notification from one process (user
process or OS) to another process about
an event

l  Handler: code ran in response to a signal
l  Handling signals:

§  can be ignored
§  ran the default handler
§  ran the user handler

Cristina Nita-Rotaru Lecture 17/ Fall 2013 21

Asynchronous or synchronous

l  Asynchronous
§  Poll: ask the OS, did the event took place
§  Handle: tell OS what to do when the event

occurs (through the handler)

l  Synchronous
§  The process that generated the signal blocks

till the handler of the signal is executed and
returns

Cristina Nita-Rotaru Lecture 17/ Fall 2013 22

Types of signals

l  Interrupts
§  (SIGINT, Ctrl-C); Environment-triggered

(SIGINT, Ctrl-C)

l  Hardware
§  (SIGSEGV); divide by 0, invalid memory

reference

l  Software
§  (SIGPIPE, SIGALRM). Timeout on network

connection, a broken pipe, ...

Cristina Nita-Rotaru Lecture 17/ Fall 2013 23

Generating a signal

#include <signal.h>
int kill(pid_t pid, int sig);
int raise(int sig);

l  kill can send any signal to any process group or
process.
§  If pid is positive, then signal sig is sent to the process with the

ID specified by pid.
§  If pid equals 0, then sig is sent to every process in the process

group of the calling process.

l  raise generates a signal handled by the program
that contains the call to raise;
§  In a single-threaded program it is same as kill

Cristina Nita-Rotaru Lecture 17/ Fall 2013 24

List of signals

l  UNIX has a fixed set of signals (Linux
has 32 of them)

l  signal.h defines the signals in the OS

l  Applications programs can use SIGUSR1
& SIGUSR2 for arbitrary signaling

Cristina Nita-Rotaru Lecture 17/ Fall 2013 25

Signal.h

SIGABRT:
l  Abnormal termination, such as instigated by the

abort function (Abort)
SIGFPE:
l  Erroneous arithmetic operation, such as divide

by 0 or overflow (Floating point exception)
SIGILL:
l  An ‘invalid object program’ has been detected.

This usually means that there is an illegal
instruction in the program (Illegal instruction)

Cristina Nita-Rotaru Lecture 17/ Fall 2013 26

Signal.h cont.

SIGINT:
l  Interactive attention signal; on interactive

systems this is usually generated by typing
some ‘break-in’ key at the terminal (Interrupt)

SIGSEGV:
l  Invalid storage access; most frequently caused

by attempting to store some value in an object
pointed to by a bad pointer (Segment violation)

SIGTERM:
l  Termination request made to the program

(Terminate)
Cristina Nita-Rotaru Lecture 17/ Fall 2013 27

signal

#include <signal.h>
void (*signal (int sig, void (*func)(int)))(int);

l  signal installs a new handler for the
supplied signal
§  It returns the previous value of the handler as

its result
§  If no such value exists, it returns SIG_ERR

and sets errno appropriately

Cristina Nita-Rotaru Lecture 17/ Fall 2013 28

#include <signal.h>
void (*signal (int sig, void (*func)(int)))(int);

l  signal is a function pointer to a function that

§  takes as arguments a signal (represented as an
int) and a handler

§  returns a function that takes an int and returns
void

l  The handler is a function pointer to a function
that takes an int and returns void.

Cristina Nita-Rotaru Lecture 17/ Fall 2013 29

Example with signal

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

long prev, i;

void SIGhandler(int sig) {
 printf("\nGot SIGUSR1. %ld!=%ld\n", i-1, prev);
 exit(0);

}
void main(void) {
 long fact;
 signal(SIGUSR1, SIGhandler);
 for (prev = i = 1; ; i++, prev = fact) {

 fact = prev*i;

 if (fact < 0) raise(SIGUSR1);
 else if (i % 3 == 0)

 printf(" %ld! = %ld\n", i, fact);
 }
}

Cristina Nita-Rotaru Lecture 17/ Fall 2013 30

Example program handling two signals

static void sig_usr(int signo) {
 if (signo == SIGUSR1)
 printf(“received SIGUSR1\n”);
 else if (signo == SIGUSR2)
 printf(“received SIGUSR2\n”);
 else
 printf(“received signal %d\n”, signo);
 return;
}

int main () {
 if (signal(SIGUSR1, sig_usr) == SIG_ERR)
 perror(“cannot catch signal SIGUSR1”);
 if (signal(SIGUSR2, sig_usr) == SIG_ERR)
 perror(“cannot catch signal SIGUSR2”);
 for(;;) pause();
}

Cristina Nita-Rotaru Lecture 17/ Fall 2013 31

Example

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

FILE *temp_file;
void leave(int sig);

int main() {
 signal(SIGINT,leave);
 temp_file = fopen("tmp","w");
 for(;;) { printf("Ready...\n"); getchar(); }
 exit(EXIT_SUCCESS);
}
void leave(int sig) {
 fprintf (temp_file,"\nInterrupted.");
 fclose(temp_file);
 exit(sig);
}

Cristina Nita-Rotaru Lecture 17/ Fall 2013 32

Readings and exercises for this lecture

Read man/info pages for
all the functions
mentioned in the lecture

Code all the examples in

the lecture.

Cristina Nita-Rotaru Lecture 17/ Fall 2013 33

