CS240: Programming in C

Lecture 16: Process and
Signals

Cristina Nita-Rotaru Lecture 16/ Fall 2013 1

Processes in UNIX

o UNIX identifies processes via a unique
Process ID

» Each process also knows its parent
process |ID since each process is
created from a parent process.

= Root process is the ‘init’ process

o getpid and getppid functions to return
process ID (PID) and parent process ID
(PPID)

Cristina Nita-Rotaru Lecture 16/ Fall 2013

Unix Start Up Processes

OS kernel

Process 0
(sched)

Process 1
(init)

Cristina Nita-Rotaru

l l

getty getty

l

login

l

csh
Lecture 16/ Fall 2013

getty

login

bash

Process |ID

#include <stdio.h>
#include <unistd.h>

int main () {

printf (“I am process %1d\n”, (long)getpid());
printf (“My parent id is %1d\n”, (long)getppid());

return 0O;

Cristina Nita-Rotaru Lecture 16/ Fall 2013

Creating Processes

o Fork

= Creates a new process, called child,
by duplicating the calling process
called parent

e EXxec

= Replacing process’s program with the
one inside the exec() call.

Cristina Nita-Rotaru Lecture 16/ Fall 2013

fork

#include <unistd.h>
pid t fork(void);

o Creates a new process, called child, by
duplicating the calling process called parent

o On success, in child it returns 0 and in the parent
returns the PID of the child process

o On failure, in parent returns -1 and and errno is
set appropriately; no child process is created

Cristina Nita-Rotaru Lecture 16/ Fall 2013

Fork detalls

o Duplication means:

= Child gets exact copy of code, stack, file
descriptors, heap, global variables, and
program counter

= BUT new pid

o EXxecution of parent and child:
* |[n parallel
= Parent wait for the child

Cristina Nita-Rotaru Lecture 16/ Fall 2013

Fork Example

#include <stdio.h>
#include <unistd.h>

int main() {
pid t x;
x = fork();
if(x == 0) {
printf (“I am the child: fork returned %1d\n”, (long) x);
printf (“Child and my ID is : %$1d\n”, (long)getpid()):;
}

else {

printf (“I am the parent: fork returned $1d\n", (long) x);
}

return O;

Cristina Nita-Rotaru Lecture 16/ Fall 2013

exec

#include <unistd.h>
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ...,
char *const envp[])

int execv(const char *path, char *const argv[]),
int execvp(const char *file, char *const argv[])’

int execve(const char *filename, char *const argv [],
char *const envp[]);

o Family of functions for replacing process’s program with
the one inside the exec() call.

Cristina Nita-Rotaru Lecture 16/ Fall 2013

Exec example

#include <unistd.h>

int main () {

execl ("/bin/1s",

return 0;

Cristina Nita-Rotaru

"ls", NULL) ;

Lecture 16/ Fall 2013

10

Process Termination

o A process can terminate voluntary or
iInvoluntary

o Voluntary
= Normal termination: exit(0)
= Error termination exit(2) or abort()
« Involuntary:
= Fatal error: divide by 0, segmentation fault
= Killed by another process kill(procID)

Cristina Nita-Rotaru Lecture 16/ Fall 2013

11

What happens when a process
terminates?

« All open files are flushed and closed
o Temporary files are deleted

« Resources are de-allocated

« Parent process is notified via a signal

o EXxit status is available to parent via
wait()

Cristina Nita-Rotaru Lecture 16/ Fall 2013

12

Wait and waitpid

#include <sys/types.h>

#include <sys/wait.h>

pid t wait(int *statloc);

pid t waitpid(pid t pid, int *status, int opts)

o YNEEit:()

= Makes the parent process to wait (block)
until some child finishes

» Returns child’s pid and exit status to parent
e walitpid()

= Makes the parent to wait (block) for a
specific child

Cristina Nita-Rotaru Lecture 16/ Fall 2013 13

Interprocess Communication

o Pipe sets up a communication channel between two
(related) processes.

Process Process
Pipe

Cristina Nita-Rotaru Lecture 16/ Fall 2013 14

pipe

#include <unistd.h>
int pipe(int pipefd[2]) ;

o Creates a pipe

o pipefd is used to return two file descriptors referring
to the ends of the pipe.

= pipefd[0] refers to the read end of the pipe.
= pipefd[1] refers to the write end of the pipe.

o Data written to the write end of the pipe is buffered
by the kernel until it is read from the read end of the

pipe.
e Returns 0 on success and -1 on error

Cristina Nita-Rotaru Lecture 16/ Fall 2013

15

Pipe Example

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>

#define BUF SIZE 100

int main () {
char child recv[BUF_SIZE] ;

char *parent send = "Hello world!";
int £d[2];

pipe (£d) ; /* create pipe */

if (fork() '= 0) { /* parent */

printf ("Sending to child: %s\n", parent send) ;

write (£d[1], parent_send, strlen(parent send) + 1) ;

}
else { /* child */

read (£d[0], child recv, 1024) ;
printf ("Received from parent: %s\n", child recv) ;

}

return O;

}
Cristina Nita-Rotaru Lecture 16/ Fall 2013

16

Readings and exercises for this lecture

Read man/info pages for
all the functions
mentioned In the lecture

Code all the examples in

the lecture. \/

Cristina Nita-Rotaru Lecture 16/ Fall 2013

17

