
CS240: Programming in C

Lecture 13 si 14: Unix
interface for working with

files.

Cristina Nita-Rotaru Lecture 13/Fall 2013 1

Working with Files (I/O)

l  File system: specifies how the information is
organized on the disk and can be accessed
§  Directories
§  Files

l  In UNIX the following are files
§  Peripheral devices (keyboard, screen, etc)
§  Pipes (inter process communication)
§  Sockets (communication via computer networks)

l  Files representation
§  Text files (human readable format)
§  Binaries (for example executables files)

Cristina Nita-Rotaru Lecture 13/Fall 2013 2

Functions and System Calls

l  System calls: services provided by the
operating system.

l  C Library provides support such that a
user can invoke system calls through C
functions.

l  Example:
§  I/O operations (I/O access is slower than

memory access)
§  Memory allocation

Cristina Nita-Rotaru Lecture 13/Fall 2013 3

File Descriptors

l  In order to perform operations on a file, the
filed must be opened. Any opened file has
associated a non-negative integer called
file descriptor.

l  For each program the operating system
opens implicitly three files: standard input,
standard output and standard error, that
have associated the file descriptors 0, 1, 2
in this order.

Cristina Nita-Rotaru Lecture 13/Fall 2013 4

C Library I/O Interface

l  The C Library provides two mechanisms
for working with files:
§  file descriptors: objects of type int

 int fd;
§  streams: FILE * objects.

FILE * fp;

Cristina Nita-Rotaru Lecture 13/Fall 2013 5

File Descriptors

l  Primitive, low-level interface to input
and output operations.

l  Must be used for control operations
that are specific to a particular kind of
device.

Cristina Nita-Rotaru Lecture 13/Fall 2013 6

Streams

l  Higher-level interface, layered on top of the
primitive file descriptor facilities.

l  More powerful set of functions for performing
actual input and output operations than the
corresponding facilities for file descriptors.

l  It is implemented in terms of file descriptors
§  the file descriptor can be extracted from a stream and

then perform low-level operations directly on the file
descriptor

§  a file can be open as a file descriptor and then make a
stream associated with that file descriptor.

Cristina Nita-Rotaru Lecture 13/Fall 2013 7

Standard Input, Output and Error

l  For every program the operating system
opens three files and provides pointers to
them:
§  Standard input: stdin
§  Standard output: stdout
§  Standard error: stderr

l  Normally, stdin is connected to the
keyboard and stdout to the screen, but they
may be redirected to pipes or files.

#include <stdio.h>

Cristina Nita-Rotaru Lecture 13/Fall 2013 8

Formatted Output

printf(char *format, arg1, arg2, …);
sprintf(char *string, char *format, arg1, arg2, …);
fprintf(FILE *fp, char *format, arg1, arg2, …);

Examples:
 int int_val;
 char ch_val[10];
 char buffer[256];
 FILE *f;
 …
 printf(“%d, %s, %p\n”, int_val, ch_val, &int_val);
 fprintf(stderr, “%d, %s\n”, int_val, ch_val);
 fprintf(f, “%d, %s\n”, int_val, ch_val);
 sprintf(buffer, “%d, %s\n”, int_val, ch_val);

Cristina Nita-Rotaru Lecture 13/Fall 2013 9

Formatted Input

scanf(char *format, arg1, arg2…);
sscanf(char *string, char *format, arg1, arg2, …);

Examples
double sum, v;
char ch[10];

sum = 0;
scanf(“%s”, ch);
while(scanf(“%lf”, &v) == 1) {
 printf(“\t%.2f\n, sum += v”);

}

The arguments to scanf and sscanf MUST be pointers !

Cristina Nita-Rotaru Lecture 13/Fall 2013 10

Printing Error Messages

l  Standard output stream (stdout) can be
redirected and in that case the error
messages will not be printed on the screen

l  Solution: print to standard error file stream,
stderr. Output written to stderr will appear
on the screen even if stdout is redirected.

fprintf(stderr, “Error in function %s\n”,

func_name);

Cristina Nita-Rotaru Lecture 13/Fall 2013 11

Example: output redirection

#include <stdio.h>

int main() {

 fprintf(stdout, "Printing to stdout with fprintf\n");
 printf("Printing to stdout with printf\n");

 fprintf(stderr, "Printing to stderr.\n");

 return 0;
}

./test
./test > a.txt

Cristina Nita-Rotaru Lecture 13/Fall 2013 12

Example: input redirection

#include <stdio.h>

int main() {
 int c;

 while((c=getchar())!= EOF) {
 putchar(c);
 }
 return 0;
}

gcc -std=c99 stdin_test.c -o stdin_test
 ./stdin_test < a.txt

Cristina Nita-Rotaru Lecture 13/Fall 2013 13

The Stream Interface – Open

#include <stdio.h>

FILE *fopen (const char *path, const char* mode);

l  Opens the file path. Mode specifies if the file is
opened for write, read or both, if is opened as a text
or as a binary file.

l  Returns NULL if it fails and errno is set to indicate
the error.

Cristina Nita-Rotaru Lecture 13/Fall 2013 14

The Stream Interface – Open - Mode

§  r Open text file for reading. The stream is positioned at the
beginning of the file.

§  r+ Open for reading and writing. The stream is positioned at the
beginning of the file.

§  w Truncate file to zero length or create text file for writing. The
stream is positioned at the beginning of the file.

§  w+ Open for reading and writing. The file is created if it does not
exist, otherwise it is truncated. The stream is positioned at the
beginning of the file.

§  a Open for appending (writing at end of file). The file is created if
it does not exist. The stream is positioned at the end of the file.

§  a+ Open for reading and appending (writing at end of file). The
file is created if it does not exist. The initial file position for
reading is at the beginning of the file, but output is always
appended to the end of the file.

Cristina Nita-Rotaru Lecture 13/Fall 2013 15

The Stream Interface – Close

#include <stdio.h>

int fclose (FILE *stream);

l  Closes the file stream.
l  Returns 0 on suceess, otherwise, EOF is returned

and errno is set to indicate the error
l  Further access on the file results in undefined

behavior.

int fileno (FILE *stream);

l  Returns the file descriptor of the file stream.

Cristina Nita-Rotaru Lecture 13/Fall 2013 16

Open/Close Streams – Examples

FILE *f1, *f2;
int fd;

/* open binary file for reading only. The stream is

positioned at the beginning of the file. */
f1 = fopen(“myfile”, ”rb”);
fd = fileno(f1);
fprintf(stderr, “file descriptor: %d\n”, fd);
fclose(f1);

/* open text file for reading and writing. The file is

created if it does not exist, otherwise it is
truncated. The stream is positioned at the
beginning of the file. */

f2 = fopen(“otherfile”, ”w+”);
fclose(f2);

Cristina Nita-Rotaru Lecture 13/Fall 2013 17

Stream Interface – Positioning

#include <stdio.h>
int feof (FILE *stream);

l  Tests the end-of-file indicator for the stream pointed to
by stream, returns non-zero if it is set.

long int ftell (FILE *stream);

l  Returns the current value of the file position indicator
for the stream pointed to by stream.

void rewind (FILE *stream);

l  Sets the file position indicator for the file pointed to by
stream to the beginning of the file.

Cristina Nita-Rotaru Lecture 13/Fall 2013 18

Stream Interface – Positioning

#include <stdio.h>

int fseek (FILE *stream, long int offset, int
whence);

l  Sets the file position indicator for the stream pointed

to by stream. New position is measured in bytes.
 New position = offset + whence

l  If whence is set to SEEK_SET, SEEK_CUR, or
SEEK_END, the offset is relative to the start of the
file, the current position indicator, or end-of-file,
respectively.

Cristina Nita-Rotaru Lecture 13/Fall 2013 19

Positioning Streams - Example

int main() {
 long fsize;
 FILE *f;

 f = fopen(“myfile”, “r”);

 /* compute the size of the file */
 fseek(f, 0, SEEK_END) ;
 fsize = ftell(f) ;
 fprintf(stderr, “file size is: %d\n”, fsize);

 fclose(f);
 return 0;
}

Cristina Nita-Rotaru Lecture 13/Fall 2013 20

Stream Interface - Errors

#include<stdio.h>
void clearerr (FILE *stream);

l  Clears the end-of-file and error indicators for the
stream pointed to by stream.

int ferror (FILE *stream);

l  Tests the error indicator for the stream pointed
to by stream, returning non-zero if it is set. The
error indicator can only be reset by the clearerr
function.

Cristina Nita-Rotaru Lecture 13/Fall 2013 21

Text Stream I/O Read

#include <stdio.h>
int fgetc (FILE *stream);

l  Reads the next character from stream and returns it as
an unsigned char cast to an int, or EOF on end of file
or error.

char *fgets (char *s, int size, FILE *stream);

l  Reads in at most one less than size characters from
stream and stores them into the buffer pointed to by s.
Reading stops after an EOF or a newline. If a newline
is read, it is stored into the buffer. A '\0' is stored after
the last character in the buffer.

Cristina Nita-Rotaru Lecture 13/Fall 2013 22

Text Stream I/O Read - Examples

#include <stdio.h>

int main() {
 FILE *f;
 int n;
 char buf[100];

 f = fopen(“myfile”, ”r”);
 fgets(buf, 10, f);
 fprintf(stderr, “read from file: %s\n”, buf);

 fclose(f);

 return 0;
}

Cristina Nita-Rotaru Lecture 13/Fall 2013 23

Text Stream I/O Write

#include <stdio.h>
int fputc (int c, FILE *stream);

l  Writes the character c, cast to an unsigned char, to
stream.

l  Return the character written as an unsigned char
cast to an int or EOF on error.

int fputs(const char *s, FILE *stream);

l  Writes the string s to stream, without '\0'.
l  Returns a non - negative number on success, or

EOF on error.

Cristina Nita-Rotaru Lecture 13/Fall 2013 24

Text Stream I/O Write - Example

int main() {
 FILE *f;
 int n;

 f = fopen(“myfile”, ”w+”);
 n = fputs(“Let’s just write something\n”, f);
 fprintf(stderr, “fputs returned: %d\n”, n);

 fclose(f);

 return 0;
}

Cristina Nita-Rotaru Lecture 13/Fall 2013 25

Binary Stream I/O - Read

#include <stdio.h>
size_t fread (void *ptr, size_t size, size_t

nmemb, FILE *stream);

l  Reads nmemb elements of data, each size bytes
long, from the stream pointed to by stream, storing
them at the location given by ptr.

l  Returns the number of items successfully read. If an
error occurs, or the end-of-file is reached, the return
value is a short item count (or zero).

l  Does not distinguish between end-of-file and error,
use feof and ferror to determine which occurred.

Cristina Nita-Rotaru Lecture 13/Fall 2013 26

Binary Stream I/O Read - Example

int main() {
 FILE *f;
 int n, v[3];

 f = fopen(“myfile”, ”rb”);

 /* read 3 int from file f */
 n = fread(v, sizeof(int), 3, f);

 fprintf(stderr, “fread returned: %d\n”, n);

 fclose(f);

 return 0;
}

Cristina Nita-Rotaru Lecture 13/Fall 2013 27

Binary Stream I/O - Write

#include <stdio.h>
size_t fwrite (const void *ptr, size_t size,

size_t nmemb, FILE *stream);

l  Writes nmemb elements of data, each size bytes

long, to the stream pointed to by stream,
obtaining them from the location given by ptr.

l  Returns the number of items successfully written.
If an error occurs, or the end-of-file is reached, the
return value is a short item count (or zero).

Cristina Nita-Rotaru Lecture 13/Fall 2013 28

Binary Stream I/O Write - Example

int main() {
 FILE *f;
 int n, v[3]={1, 2, 3};

 f = fopen(“myfile”, ”wb+”);

 /* writes 3 ints in file f */
 n = fwrite(v, sizeof(int), 3, f);

 fprintf(stderr, “fwrite returned: %d\n”, n);

 fclose(f);

 return 0;
}

Cristina Nita-Rotaru Lecture 13/Fall 2013 29

Example: error handling

l  Upon successful completion fopen(),
fdopen(), and freopen() return a FILE
pointer. Otherwise, NULL is returned
and the global variable errno is set to
indicate the error.

l  You can use perror to print the
associated error message

Cristina Nita-Rotaru Lecture 15/ Spring 2010 30

Readings and exercises for this lecture

K&R Chapter 5.11, 6.8,
6.9

Code all the examples in the

lecture.

Cristina Nita-Rotaru Lecture 13/Fall 2013 31

