
CS240: Programming in C

Lecture 11: Bit fields,
unions, pointers to functions

Cristina Nita-Rotaru Lecture 11/ Fall 2013 1

Structures recap

l  Holds multiple items as a unit
l  Treated as scalar in C: can be returned

from functions, passed to functions
l  They can not be compared
l  A structure can include

§  a pointer to itself, but not a member of the
same structure

§  a member of another structure, the latter has
to have the prototype declared before

Cristina Nita-Rotaru Lecture 11/ Fall 2013 2

Structure recap

l  Member access
§  Direct: s.member
§  Indirect: s_ptr->member
§  Dot operator . has precedence over

indirection -> : agenda.contact->name

l  Use const to make a structure read-only

Cristina Nita-Rotaru Lecture 11/ Fall 2013 3

Memory layout for a structure

l  Data alignment: when cpu accesses the
memory reads more than one byte,
usually 4 bytes on a 32-bit platform.

l  What is the data structure is not a
multiple of 4? Padding.

l  Many computer languages and computer
language implementations handle data
alignment automatically.

Cristina Nita-Rotaru Lecture 11/ Fall 2013 4

Bit fields

l  Structure member variables can be
defined in bits

l  Everything about bit fields is machine-
dependent
struct {
 unsigned int is_down : 1;
 unsigned int is_red : 1;
} flags;
flags.is_down = 1;
if (flags.is_red == 0) { ….
}

Cristina Nita-Rotaru Lecture 11/ Fall 2013 5

Unions

l  They can hold different type of values at
different times

l  Definition is similar with structure BUT
§  STORAGE IS SHARED between the

members
§  Only one field type stored at a time
§  Programmer’s responsibility to keep track of

what it is stored.

Cristina Nita-Rotaru Lecture 11/ Fall 2013 6

Unions memory layout

l  All members have offset zero from the
base

l  Size is big enough to hold the widest
member

l  The alignment is appropriate for all the
types in the union

Cristina Nita-Rotaru Lecture 11/ Fall 2013 7

Union operations

l  Same as structures: The same
operations as the ones permitted on
structures are permitted on unions:
§  Assignment,
§  Coping as a unit
§  Taking the address
§  Accessing a member

l  Initialize: can be initialized with a value
of the type of its first member.

Cristina Nita-Rotaru Lecture 11/ Fall 2013 8

Unions: examples

union number {
 int ival;
 float fval;
 double dval;

};
Union can be member of a structure
struct {
 int type;
 union number {
 int ival;
 float fval;
 double dval;
 }value;

} n;

Cristina Nita-Rotaru Lecture 11/ Fall 2013 9

Example:

Cristina Nita-Rotaru Lecture 11/ Fall 2013 10

#include <stdio.h>

typedef enum { INT, FLOAT, DOUBLE}
my_type;

struct my_number{
 my_type type;
 union {
 int ival;
 float fval;
 double dval;
 }value;
};

void initialize_my_number(struct
my_number * n, int ival) {
 n->type = INT;
 n->value.ival = ival;
}

void print_my_number(struct
my_number n) {
 switch (n.type){
 case INT:
 printf("%d\n", n.value.ival);
 break;
 case FLOAT:
 printf("%f\n", n.value.fval);
 break;
 case DOUBLE:
 printf("%lf\n", n.value.dval);
 break;
 default:
 printf("Unknown type\n");
 break;
 }
}

Example (cont.)

Cristina Nita-Rotaru Lecture 11/ Fall 2013 11

int main() {

 struct my_number i;

 initialize_my_number(&i, 12);
 print_my_number(i);

 return 0;
}

Memory layout for a process

l  The operating system creates a
process by assigning memory and
other resources"

l  Stack: keeps track of the point to which each active
subroutine should return control when it finishes
executing; stores variables that are local to
functions

l  Heap: dynamic memory for variables that are
created with malloc, calloc, realloc and disposed of
with free

l  Data: initialized variables including global and static
variables, un-initialized variables

l  Code: the program instructions to be executed

Cristina Nita-Rotaru Lecture 11/ Fall 2013 12

Stack

Heap

Code

Data

Virtual Memory

Java vs C Structures: Example

In C:
struct Slot {
 int x;
 int y;
 int direction;
};

Cristina Nita-Rotaru Lecture 11/ Fall 2013 13

Java Example:
class Slot {

 int x;
 int y;
 int direction;

methods ...
}

What about functions ???

Pointers to functions

Cristina Nita-Rotaru Lecture 11/ Fall 2013 14

l  Code resides in memory
l  Function Pointers are … pointers which

point to the address of a function.
l  Function pointers are variables.
l  A function pointer always points to a function

with a specific prototype, i.e. same
parameters and return-type!

int (*Function_ptr)(int, char);

Why do we need function pointers?

l  Functions as arguments to other
functions: sort routine where the main
mechanism for sorting is passed as a
comparison function by the caller (354)

l  Callback Functions: functions that are
invoked when a particular event
happens. Useful in networking or graphic
applications (354)

Cristina Nita-Rotaru Lecture 11/ Fall 2013 15

Working with pointers to functions

l  Declaration and initialization
int (*Function_ptr)(int, char*) = NULL;

l  Assignment

int print_error(int n, char* str){
 printf(”Error (%d): %s\n”, n, str);
 return 0;

};

Function_ptr = print_error;
Function_ptr = &print_error;

l  Calling a function pointer
int ret = (*Function_ptr)(4, “Exit\n”);

Cristina Nita-Rotaru Lecture 11/ Fall 2013 16

Working with function pointers

l  Pass a function pointer as argument
void SomeFunc(int (*ptrFunc)(int, char*)){
 int result = (*ptrFunc)(1, “OK”);
}
SomeFunc(&print_error);

l  Return a function pointer
typedef int(*ptrFun)(int, char*);
ptrFun GetPrint(int type){
 if(type == DETAILED)
 return &print_details;
 else
 return &print_summary;

}
Cristina Nita-Rotaru Lecture 11/ Fall 2013 17

Pointers to functions and structures

l  Function pointers can be members of
structures.

struct Slot {
 int x;
 int y;
 int direction;
 void (*print)(Slot *s);
};

Cristina Nita-Rotaru Lecture 11/ Fall 2013 18

Example

#include <stdio.h>

typedef void (*ptrFun)(int, char*);

void print_error(int n, char* str){
 printf("Error (%d): %s\n", n, str);
}

void print_message(int n, char *str) {
 printf("Message(%d): %s\n", n, str);
}

void PassFunctionPointer(ptrFun g, int

n, char *s) {
 (*g)(n, s);
}

Cristina Nita-Rotaru Lecture 11/ Fall 2013 19

int main() {
 ptrFun f = NULL;

 f = &print_error;
 (*f)(10, "Call print_error");

 f = &print_message;

 (*f)(11, "Call print_message");

 PassFunctionPointer(&print_error,

12, "Passing print_error");
 PassFunctionPointer(&print_message,

13, "Passing print_message");

 return 0;
}

Readings and exercises for this lecture

K&R Chapter 5.11, 6.8,
6.9

Code all the examples in the

lecture.

Cristina Nita-Rotaru Lecture 11/ Fall 2013 20

