
{C}
Tools of the Trade

make

Building Software
gcc is our compiler
‣Turns C code into machine code

ar is our librarian
‣Gathers machine code files into groups called libraries

But calling these over and over is tedious!

$ gcc -std=c99 -c list.c
$ ar rcu liblist.a list.o
$ gcc -std=c99 -o trends trends.c -L. -llist

3

Building Software
Luckily, the process of building (and rebuilding) software can
be automated!

make
‣Automates the software build process

4

make
The basics:
‣When you type make on the command line, make looks for a file named
Makefile

‣Makefile describes how your sources are converted into programs
‣make can also take arguments, to change how the program is built:

make CFLAGS=”-g”

make is a very common way to build software, but there are
others
‣autoconf, cmake, scons, Xcode, Visual Studio, complicated mess of scripts, ...

5

Makefile
A Makefile is a list of targets, dependencies, and commands
A simple Makefile:

hello: hello.c world.c
 gcc -std=c99 -o hello hello.c world.c

6

Makefile
A Makefile is a list of targets, dependencies, and commands
A simple Makefile:

hello: hello.c world.c
 gcc -std=c99 -o hello hello.c world.c

6

Target Dependencies

Command

Makefile

A simple Makefile:

hello: hello.c world.c
 gcc -std=c99 -o hello hello.c world.c

7

Makefile

A simple Makefile:

hello: hello.c world.c
 gcc -std=c99 -o hello hello.c world.c

7

Capital M
Yes, case does matter!

Makefile

A simple Makefile:

hello: hello.c world.c
 gcc -std=c99 -o hello hello.c world.c

7

Tab (NOT spaces!)
Some editors will put

spaces even if you ask
for a tab, so be careful!

Capital M
Yes, case does matter!

Building with make
8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

Makefile hello hello.c world.c

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

Makefile hello hello.c world.c

$ make

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

Makefile hello hello.c world.c

$ make

make: `hello’ is up to date

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

Makefile hello hello.c world.c

$ make

make: `hello’ is up to date

$ vi hello.c

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

Makefile hello hello.c world.c

$ make

make: `hello’ is up to date

$ vi hello.c

$ make

8

Building with make
When you make, if the target does not exist, or dependencies
have changed, it builds

$ ls

Makefile hello.c world.c

$ make

gcc -std=c99 -o hello hello.c world.c

$ ls

Makefile hello hello.c world.c

$ make

make: `hello’ is up to date

$ vi hello.c

$ make

gcc -std=c99 -o hello hello.c world.c

8

Multiple targets
If your Makefile lists multiple targets, only the first is default

‣Makefile:
hello: hello.c world.c

 gcc -std=c99 -o hello hello.c world.c

goodbye: goodbye.c world.c

 gcc -std=c99 -o goodbye goodbye.c world.c

‣Command line:

$ make # builds hello
$ make goodbye # builds goodbye

9

Dependencies and targets
Dependencies can also be targets!

‣Makefile:

hello: hello.c libworld.a

 gcc -std=c99 -o hello hello.c -L. -lworld

libworld.a: world.c

 gcc -std=c99 -c world.c

 ar rcu libworld.a world.o

‣Command line:

$ make

gcc -std=c99 -c world.c

ar rcu libworld.a world.o

gcc -std=c99 -o hello hello.c -L. -lworld

10

Pseudo-targets
Some targets may not actually be programs or files

all: hello goodbye

hello: hello.c world.c

 gcc -std=c99 -o hello hello.c world.c

goodbye: goodbye.c world.c

 gcc -std=c99 -o goodbye goodbye.c world.c

clean:

 rm hello goodbye

11

Pseudo-targets
Some targets may not actually be programs or files

all: hello goodbye

hello: hello.c world.c

 gcc -std=c99 -o hello hello.c world.c

goodbye: goodbye.c world.c

 gcc -std=c99 -o goodbye goodbye.c world.c

clean:

 rm hello goodbye

11

There is no program called “all”

But building “all” builds
both hello and goodbye

Pseudo-targets
Some targets may not actually be programs or files

all: hello goodbye

hello: hello.c world.c

 gcc -std=c99 -o hello hello.c world.c

goodbye: goodbye.c world.c

 gcc -std=c99 -o goodbye goodbye.c world.c

clean:

 rm hello goodbye

11

There is no program called “all”

But building “all” builds
both hello and goodbye

“make clean” is a common
pseudo-target for cleaning up

Compiling vs linking
When a GCC command includes multiple C files, each are
compiled, then all are linked into a single program:

gcc -std=c99 -o hello hello.c world.c
‣Builds hello.c into hello.o
‣Builds world.c into world.o
‣ Links hello.o and world.o into hello

If some C files don’t change, you’re wasting time recompiling
them. make to the rescue!

12

Compiling vs linking

hello: hello.o world.o
 gcc -std=c99 -o hello hello.o world.o

hello.o: hello.c
 gcc -std=c99 -c hello.c

world.o: world.c
 gcc -std=c99 -c world.c

13

Variables
Avoid repetition and be flexible by making variables

‣Makefile:

CC=gcc
CFLAGS=-std=c99 -O2 -g

hello: hello.c
 $(CC) $(CFLAGS) -o hello hello.c

‣ Command line:

$ make
gcc -std=c99 -O2 -g -o hello hello.c

$ rm hello ; make CFLAGS=”-g”
gcc -g -o hello hello.c

14

Patterns
Very common patterns (such as compiling .c files into .o files)
can be grouped

e.g. a target for all .o files:

%.o: %.c
 $(CC) $(CFLAGS) -c $<

15

gdb

Debugg☐☐Segmentation fault
Misuse of memory can cause crashe☐☐☐☐

☐☐

Bus error

17

Debugging
Misuse of memory can cause crashes and odd behavior

gdb is our debugger
‣Helps understand why misbehaving code misbehaves

gdb is just one tool in your arsenal
‣don’t forget how useful printfs can be!

gdb has its flaws
‣“But my code works under gdb!”

18

gdb basics
Compile your program with -g
‣$ make CFLAGS=”-g”

Run your program under gdb:
‣$ gdb ./hello
...
(gdb) run
...
Program received SIGSEGV, Segmentation fault.
... in main () at hello.c:3
3 *((int *) NULL) = 0;
(gdb)

19

gdb demo

(Demo)

20

Recap

gdb commands:
‣bt: Tells you the “backtrace” (all functions in the call stack)
‣print: Shows the value of variables, expressions, etc

print <expression>

‣ list: Shows surrounding code
‣ step: Single-step execution
‣next: Bigger single-step execution
‣break: Sets breakpoints

break foo.c:42

21

mudflap

Bounds Checking
C does not perform bounds checking on arrays

int main()
{
 int arr[10];
 for (int i = 1; i <= 10; i++) arr[i] = i;
 printf("%d\n", arr[1]);
 return 0;
}

Without bounds checking, buggy code has undefined behavior;
it may work on some systems, but fail on others

23

mudflap
mudflap is a library that comes with gcc

To use mudflap, compile with -g -fmudflap -lmudflap

‣gcc outofbounds.c -g -fmudflap -lmudflap

mudflap will tell you where things go wrong

24

mudflap output
$./a.out

mudflap violation 1 (check/write): time=1329410522.640484 ptr=0x7fff2b4ffda0
size=44
pc=0x7f03809ef311 location=`outofbounds.c:6:42 (main)'
 /usr/lib/x86_64-linux-gnu/libmudflap.so.0(__mf_check+0x41) [0x7f03809ef311]
 ./a.out(main+0xa4) [0x400a88]
 /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xfd) [0x7f038067cead]
Nearby object 1: checked region begins 0B into and ends 4B after
mudflap object 0x23a55a0: name=`outofbounds.c:5:9 (main) arr'
bounds=[0x7fff2b4ffda0,0x7fff2b4ffdc7] size=40 area=stack check=0r/4w
liveness=4
alloc time=1329410522.640468 pc=0x7f03809eea51
number of nearby objects: 1
1

25

mudflap output
$./a.out

mudflap violation 1 (check/write): time=1329410522.640484 ptr=0x7fff2b4ffda0
size=44
pc=0x7f03809ef311 location=`outofbounds.c:6:42 (main)'
 /usr/lib/x86_64-linux-gnu/libmudflap.so.0(__mf_check+0x41) [0x7f03809ef311]
 ./a.out(main+0xa4) [0x400a88]
 /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xfd) [0x7f038067cead]
Nearby object 1: checked region begins 0B into and ends 4B after
mudflap object 0x23a55a0: name=`outofbounds.c:5:9 (main) arr'
bounds=[0x7fff2b4ffda0,0x7fff2b4ffdc7] size=40 area=stack check=0r/4w
liveness=4
alloc time=1329410522.640468 pc=0x7f03809eea51
number of nearby objects: 1
1

26

valgrind

Memory Leaks
C does not have garbage collection

“If it’s not one thing (segfaults), it’s another (leaks)”

By failing to free memory, programs “leak”

If the leak is in a loop or often-used function, can cause huge
problems!

28

Memory Leaks
valgrind is a tool for detecting memory leaks
 (and about 1,000 other things)

(demo)

29

Summary

Summary
Decades of use means C has a rich suite of tools available

I’ve only shown you a few:
‣make
‣gdb
‣mudflap
‣valgrind

With judicious use of tools, programs can be error fr☐

31

