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TCP

} Transport protocol used by vast majority 
of Internet traffic
} Including traffic encrypted with TLS
} Including network infrastructure protocols 

like BGP
} Thousands of implementations

} Over 5,000 implementation variants 
detectable by nmap

} Provides:
} Reliability
} In-order delivery
} Flow control
} Congestion control
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TCP attacked for 30 years!
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Why so many attacks?

} Complex goals
} Reliability, in-order delivery, congestion control

} Many designs and implementations
} Different designs for congestion control: Tahoe, 

Reno, New Reno, SACK, Vegas, BIC, CUBIC
} Hundreds of implementations

} Written in low level languages
} Highly efficient, but error-prone

} Heavily optimized
} Prefers performance to ease of

understanding and maintenance
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TCP connection set up and tear down

} Connection establishment
} Check the other end exists
} Set communication 

parameters on both directions
} Data sending

} Bytes are numbered 
} Receiver periodically sends 

cumulative ACKS to sender 
} Connection teardown

} Graceful - each end releases its 
side of the connection

} Abrupt - prevent attacks, lack 
on resources

5

Sender Receiver
SYN

SYN,ACK
ACK

ACK,Data
ACK,Data

ACK,Data
ACK,Data

ACK

ACK,Data
ACK,Data

ACK

FIN
FIN,ACK

ACK

Connection
establishment

Data
transfer

Connection
tear down

Cristina Nita-Rotaru



TCP congestion control

} Protects against congestion collapse, provides fairness
} Many designs and implementations

} Multiple Variations: Reno, New Reno, SACK, Vegas, BBR
} Multiple Optimizations: PRR, TLP, DSACK, FRTO, RACK
} Hundreds of implementations
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This talk
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} Connection establishment: SNAKE
} State-machine based attack injection

} Congestion control: TCPwn (loss), aBBRate (model)
} Model-based testing  approach

Can we automatically find attacks
in TCP implementations? 

(without instrumenting the code)



Current methods

} Developer test suites
} Tests used by developer to make sure implementation is 

correct
} Packetdrill [USENIX 13]

} Fuzzing
} KiF [IPTComm 07], SNOOZE [ISC 06], EXT-NSFM [IMCCC 11]
} Find crashes by subjecting implementation to random inputs

} MAX [SIGCOMM 11]
} Automatically find manipulation attacks using symbolic 

execution
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Ad-hoc, focused on benign scenarios

Difficulty reaching deep states, focus on 
crashes

Requires the user to select vulnerable lines 
of code
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Performance Attacks

} Decrease the throughput 
of a target connection

} Stall a connection
} Increasing the throughout 

of a connection (basically 
making TCP behave as UDP 
– denial of service)

Availability Attacks

} Keep resources allocated --
Denial of Service (DoS) 

} Make a network service 
unavailable to all users

} Targeting a single 
connection using very 
focused actions

9Cristina Nita-Rotaru

Attack model



Our approach
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} Test unmodified binaries in their 
native environment for close to 
deployment environment 

} Testing for performance and 
availabilty issues, we need 
reproducible performance results

} No code instrumentation

} Minimal input from user

1.Virtualization

2.Network 
emulation

3.Messages
interception

4.Message format, 
metric, topology, 
malicious nodes

5. AUTOMATED



Design questions
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} What attacks to create: 
} Disrupt message delivery: Delay, Divert, Duplicate, Drop:
} Corrupt message content: lie field by field (based on field 

type range and on original value): Min and max, Zero, Scaling, 
Spanning, Random

} How to decide that the result was an attack:
} Throughput, latency

} How to find attacks: 
} Brute force, greedy search algorithm, weighted greedy

} When to inject an attack:
} Packet send-based, time-based, state machine-based



Attack injection:  Packet send-based

} How
} For each packet, inject each 

attack at packet send call 
} Pros.

} Simple
} Systematic

} Cons.
} Does not support injecting 

new packets
} Only considers modifying a 

single packet per test
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Not a good fit for finding 
attacks in TCP handshake



Attack injection:  Time-based

} How
} Every n seconds, inject a

message attack and observe the 
result

} Supports injecting new packets
} Can hit a particular point in 

execution assuming synchronized 
clocks

} Cons.
} Trade-off between coverage and 

scalability when selecting n

Cristina Nita-Rotaru 13

Cannot achieve scalability and coverage!

Scales with n*connection_length*attacks
A minimum sized TCP packet takes 5 microseconds to 
transmit at 100Mbits/sec

12 million pkts*60 attacks*2min = 24 million hours



} Improved scalability and 
coverage

} State machine identifies 
key protocol areas

} Similar packet types 
received in the same state 
often perform similar 
actions

} Combine protocol state 
and packet type for attack 
injection
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Our approach: Leverage state machine 

TCP Connection State Machine
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Attack injection:  State machine-based

} How
} Consider the protocol state, packet type pairs and apply 

each message attack to each pair
} Pros.

} Scalable
} Can apply attacks to more than a single packet

} Cons.
} Assumes state machine is available
} Assumes state machine is implemented correctly

Cristina Nita-Rotaru 15



Decide if it was an attack or not
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} During testing, performance and 
resource usage information 
collected to identify attacks 

} Attack declared if:
} Throughput of a flow is different that 

of the competing flow’s by more than 
a factor of 2

} Server resources are not released at 
the end of the test



SNAKE

} Supported attacks: Drop, Duplicate, Delay, Batch, 
Reflect, Lie about packet fields, Inject, and 
HitSeqWindow

} Current protocol state tracked by monitoring packets

17Cristina Nita-Rotaru

Leveraging State Information for Automated Attack Discovery in Transport Protocol Implementations 
Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru. DSN 2015. Best Paper Award.



} Client application exits
} Client responds to all 

future data with Resets
} Resets are dropped
} Server must receive ACKs 

for all data before it can 
close connection

18

TCP CLOSE_WAIT resource exhaustion attack
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Client can force the server to 
keep socket state around for 
13-30 minutes



TCP and DCCP
Protocol Attack Impact OS Known

TCP CLOSE_WAIT Resource 
Exhaustion

Server DoS Linux 
3.0/3.13

Partially

TCP Packets with Invalid Flags Fingerprinting Linux 3.0 / 
Win 8.1

No

TCP Duplicate Ack Spoofing Poor Fairness Win 95 Yes

TCP Reset Attack Client DoS All Yes

TCP SYN-Reset Attack Client DoS All Yes

TCP Duplicate Ack Rate Limiting Degraded 
Throughput

Win 8.1 No

DCCP Ack Mung Resource 
Exhaustion

Server DoS Linux 3.13 No

DCCP In-window Ack Sequence 
Number Modification

Degraded 
Throughput

Linux 3.13 No

DCCP REQUEST Connection 
Termination

Client DoS Linux 3.13 No
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This talk
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} Connection establishment: SNAKE
} State-machine based attack injection

} Congestion control: TCPwn (loss), aBBRate (model)
} Model-based testing  approach

Can we automatically find attacks
in TCP implementations? 

(without instrumenting the code)



Congestion control-related attacks

Attacks may result in:
} Decreased throughput
} Increased throughput that starves competing flows
} Stalled data transfer
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SNAKE could not find these attacks
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Congestion control
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} Goals
} Avoid overwhelming the 

network
} Divide bandwidth to flows 

sharing network 
} How

} Use signals from network to 
detect congestion  

} TCP Congestion Control
} Leverages acknowledgments 

(ACKs) to detect packet loss 

How is Congestion Detected?

Packet Loss

Why? Some queue along path overflowed due to
congestion

packet loss
"not enough space"

queue capacity

packets arriving
too fast

packet 
processing
rate

network switch

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 8 / 43How it works: Some queue along path 
overflowed due to congestion 

Packet loss as congestion signal



ACK manipulation attacks
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} Manipulate ACKs to fool sender about actual congestion
} Attacker needs to observe (on-path) or predict (off-path) 

a  sequence to be able to inject packets   
} Cause sender to send too fast, too slow or stall

Congestion Control Attacks

Manipulate ACKs to fool sender about actual
congestion

Cause sender to send too fast, too slow or stall

Attacker

Data Packets
ACKs

sender receiver

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 3 / 43



Why SNAKE could not find those attacks?

} State machine we modeled 
perceived congestion 
control as a black-box, we 
modeled only connection 
establishment, steady state 
was modeled as one state
} No visibility into ACKs and 

their relation to the different 
stages of congestion control

24Cristina Nita-Rotaru



Optimistic Ack Attack

} Acknowledging new data causes 
yellow transitions to be taken

} Increases cwnd and thus throughput 
with each loop

} Avoids red transitions which reduce 
cwnd and thus throughput

25

How does it work: Increase sending 
rate by acknowledging data that has 
not been received yet

Ack
--
cwnd+=1

Slow
Start

Exponential
Backoff

Congestion
Avoidance

Fast
Recovery

TimeoutTimeout

Ti
m

eo
ut

3 Duplicate Acks
--
cwnd = cwnd/2

New Ack
--
cwnd+=MSS

Ack
--
cwnd=0

New Ack
--
cwnd+=1

3 Duplicate Acks
--
cwnd = cwnd/2

New Reno Congestion Control
State Machine

Key Takeaways:
• Attacks attempt to cause desirable transitions
• Attacks must repeatedly execute transition to 

have noticeable impact
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Our approach for congestion control: TCPwn

} Use model-based testing to identify all possible 
attacks in a scalable manner
} Use an abstract model to generate abstract strategies
} Map abstract strategies to concrete strategies
} Execute concrete strategies on implementations to find 

attacks causing:
} Decreased throughput
} Increased throughput
} Connection stall

} 1. How to select the abstract model
} 2. How to find abstract strategies
} 3. How to map abstract strategies to concrete 

strategies

26
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Our model: New Reno

} State machine
} Input: Acks and Timers
} Output: Congestion Window 

(cwnd)
} Four states:

} Slow Start—Quickly find 
available bandwidth

} Congestion Avoidance—Steady 
state sending with occasional 
probe for more bandwidth

} Fast Recovery—React to loss by 
slowing down

} Exponential Backoff—Timeout, 
slow down
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Ack
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--
cwnd+=MSS

Ack
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cwnd=0

New Ack
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3 Duplicate Acks
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cwnd = cwnd/2

New Reno Congestion Control
State Machine
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Why New Reno

} General-enough state machine
} It is the starting based for _most_ TCP congestion 

control algorithms
} Does not capture optimizations, but our results 

show that was good enough in practice
} (As we will show later we need to also be able to 

infer the state at ran time so simpler is better)
} We trade-off precision for generality

28Cristina Nita-Rotaru



Model-based attack generation

1. Consider state machine model of congestion control
2. Identify cycles containing desirable transitions

} Abstract strategy generation
3. Force TCP to follow each cycle

} Concrete strategy generation

29

1 2
3

State Machine

1,2,1…
1,2,3,1…

Abstract Strategies

Delay Msg1, Drop Msg2
Drop Msg3, Dup Msg4

Concrete Strategies

Generate all cycles with the following pattern:
• cwnd increases/decreases along cycle
• A set of actions exist that force TCP to follow this cycle

Cristina Nita-Rotaru



Abstract strategy generation

} Enumerate all paths
} No standard graph algorithm
} We adapt depth first search to this problem

} Check that path contains cycle
} Check that cycle contains desirable transitions

} Any change to cwnd
} Add path and transition conditions to abstract 

strategies

30

1

32

5

4

Cycle

Desirable 
TransitionAbstract strategies are merely desirable 

cycles; they may not be realizable in practice!
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From abstract to concrete strategies

} Limited to packet manipulation and injection to cause 
abstract strategies

} Consider each abstract strategy separately
} Map each transition to a set of basic malicious actions

} Actions chosen to cause transition
} Based on attacker capabilities

31

1 2 3

ACK && New

ACK && Dup

Abstract Strategy
Inject Dup Ack
Inject Pre Ack
Inject Offset Ack

Duplicate Ack
Limit Ack
Pre Ack

State 1 State 2
State1:InjectDupAck,State2:DuplicateAck
State1:InjectPreAck,State2:LimitAck
State1:InjectOffsetAck,State2:PreAck
State1:InjectDupAck,State2:DuplicateAcl
…

We want to test implementations
Attacker Types:

Off-path:

On-path:

Cristina Nita-Rotaru



TCPwn design

} Test strategies created using model-based testing and 
our abstract and concrete strategy generators

} Attack injector applies malicious actions
} Performance of target TCP connection identifies 

attacks

32Cristina Nita-Rotaru

Automated Attack Discovery in TCP Congestion Control Using a Model-guided Approach. S. 
Jero, E. Hoque, D. Choffnes, A. Mislove, C. Nita-Rotaru. NDSS 2018, CISCO Network Security 
Distinguished Paper Award



Inferring congestion control state

} Approximate congestion control state and assume normal application behavior
} Take a small timeslice and observe the bytes sent and acknowledged by the 

implementation

33

Slow Start

Congestion Avoidance

Fast
Recovery

Data
Ack

Time

Se
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To apply concrete strategies to an implementation, we need to know the 
sender’s congestion control state

Bytes Sent*2 ≈ Bytes Acked
State: Slow Start

Bytes Sent ≈ Bytes Acked
State: Congestion Avoidance

Retransmitted packets or ACK pkts > Data pkts
State: Fast Recovery

ACK pkts == 0 and Data pkts > 0
State: Exponential Backoff
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Evaluation

We tested five TCP implementations:

34

Found 11 classes of attacks, 8 of them unknown

Implementation Date Congestion Control
Ubuntu 16.10 (Linux 4.8) 2016 CUBIC+SACK+FRTO+ER+PRR+TLP
Ubuntu 14.04 (Linux 3.13) 2014 CUBIC+SACK+FRTO+ER+PRR+TLP
Ubuntu 11.10 (Linux 3.0) 2011 CUBIC+SACK+FRTO
Debian 2          (Linux 2.0) 1998 New Reno
Windows 8.1 2014 Compound TCP + SACK

Cristina Nita-Rotaru



Results summary
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Attack Class Attacker Impact OS New?

Optimistic Ack On-path Increased Throughput ALL No

On-path Repeated Slow 
Start

On-path Increased Throughput Ubuntu 11.10, Ubuntu 
16.10

Yes

Amplified Bursts On-path Increased Throughput Ubuntu 11.10 Yes

Desync Attack Off-path Connection Stall ALL No
Ack Storm Attack Off-path Connection Stall Debian 2, Windows 8.1 No

Ack Lost Data Off-path Connection Stall ALL Yes

Slow Injected Acks Off-path Decreased Throughput Ubuntu 11.10 Yes
Sawtooth Ack Off-path Decreased Throughput Ubuntu 11.10, Ubuntu 

14.04, Ubuntu 16.10,
Windows 8.1

Yes

Dup Ack Injection Off-path Decreased Throughput Debian 2, Windows 8.1 Yes

Ack Amplification Off-path Increased Throughput Ubuntu 11.10, Ubuntu 
14.04, Ubuntu 16.10, 
Windows 8.1

Yes

Off-path Repeated Slow 
Start

Off-path Increased Throughput Ubuntu 11.10 Yes
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Off-path repeated slow start attack

} Linux includes adjustable dup ack threshold
} Based on observed duplicate and reordered packets

} Attacker injects many duplicate acks
} Increasing dup ack threshold

} Timeout occurs before dup ack loss detection
} Enter Exponential Backoff and then Slow Start

} Instead of Fast Recovery
} Short 200ms timeout causes throughput to be >= normal
} Competing connections  also suffer badly due to repeated 

losses

36

Time

Sending
Rate

RTO RTO RTO RTO RTO RTO

Dup Acks

RTO

Off-path attacker can 
increase throughput 
for Linux senders
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Discussion

} Use of New Reno as model
} Model limited by ability to infer sender’s state from network traffic
} More precise inference or instrumentation would enable more precise modeling
} We trade off precision for ease of application to a wide range of 

implementations

} What about CUBIC, SACK, etc?
} Most algorithms/optimizations are similar to New Reno (includes: SACK, CUBIC, 

TLP, PRR)
} We actually tested implementations of these and found attacks

} What about algorithms not similar to New Reno?
} For example: BBR, TFRC, Vegas
} Model-based testing still readily generates abstract strategies
} Need a method to infer sender’s congestion control state

37Cristina Nita-Rotaru



This talk

Cristina Nita-Rotaru 38

} Connection establishment: SNAKE
} State-machine based attack injection

} Congestion control: TCPwn (loss), aBBRate (model)
} Despite using a different congestion control approach, is BBR 

prone to acknowledgment-based manipulation attacks? 
} Are there any known attacks that BBR is immune to?  

Can we automatically find attacks
in TCP implementations? 

(without instrumenting the code)



BBR: Motivation
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How Does BBR Detect Congestion?

Estimating the bottleneck bandwidth

Why? Data cannot be delivered faster than the bottleneck can

process packets

sender
receiver

2 Mbps

70 Mbps

10 Mbps

35 Mbps

20 Mbps

bottleneck link

delivery 
rate

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 14 / 43

Packet Loss Today

packet loss

large queue buffer

packet loss

small queu
buffer

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 13 / 43

How is Congestion Detected?

Packet Loss

Why? Some queue along path overflowed due to
congestion

packet loss
"not enough space"

queue capacity

packets arriving
too fast

packet 
processing
rate

network switch

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 8 / 43How it works: Some queue along path 
overflowed due to congestion 

In modern networks: less effective

Packet loss as congestion signal

What is actually needed is to estimate 
the bottleneck link and not send faster 
than that



BRR: Congestion Control
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How is the Bottleneck Bandwidth Estimated?

By measuring fine-grained ACK rate across RTT intervals

Termed “delivery rate samples”

time

bytes

ac
k_

ra
te

RTT

Data packets
ACKs

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 15 / 43

Detecting congestion
• Estimates the Bottleneck Bandwidth 
• By measuring fine-grained ACK rate 

across RTT intervals 

Reacting to congestion:
} Retain max delivery rate sample for 

10 RTTs, and send proportionally 
} Send 25% faster 1/8 RTTs to 

approach network limit
} Backs off from network when old 

max delivery rate sample expires 



Adapting TCPwn for BBR

} TCPwn use the congestion control finite-state machine (FSM) encoding
} Searches for all paths in FSM that manipulate its sending rate
} Map paths to actual attacks
} Execute attack while measuring sending rate

41Cristina Nita-Rotaru

How Does TCPwn Work?

1 Give TCPwn BBR congestion control finite-state
machine (FSM) encoding

2 Searches for all paths in FSM that manipulate its
sending rate

3 Map paths to actual attacks
4 Execute attack while measuring sending rate

BBR FSM

Abstract
Attack

Strategy
Finder

cwnd++ cwnd++

...
Concrete

Attack
Mapping

A

B

CD

E

A

B

CD

E

If State A
drop ACKs

...
If State B 

inject dup ACKs

Testing
Enviro-
nment

Results

avg.
sending
rate...

1 2 3 4

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 19 / 43



On-path concrete attacks supported
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} ACK duplication: send same ACK several times
} ACK stepping: several ACKs are dropped and then several 

let through in a cycle
} ACK bursting:  ACKss are sent in bursts
} Optimistic ACK: acknowledge highest byte, dropping 

duplicates
} Delayed ACK:  delay ACKs for a fixed amount of time
} Limited ACK: prevent ACK numbers from increasing
} Stretch ACK: forward only every nth ACK
} Off-path: ACK duplication, offset acknowledgments, and incrementing ACKS 



Linux TCP BBR

Startup

cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(2/ln(2))

bw increasing

Drain
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(ln(2)/2)

Drain Queues

ProbeBW

cwnd = bw*min_rtt*2
rmult= [1.25,0.75,1,1,1,1,1,1]
rate=bw*min_rtt*rmult[idx]

Steady state

ProbeRTT

cwnd=4
rate=bw*min_rtt*1
Probe for min RTT

RateLimited

cwnd=est_bw*min_rtt*2
rate=est_bw*min_rtt*1

Recovery

cwnd=in_ ight*2
avoid loss during recovery

bw has not increased for 3 rounds
--
fullbw=1
rate=bw*min_rtt*(ln(2)/2)

in_ ight <=bw*min_rtt
--
cwnd=bw*min_rtt*2
idx=rand(2,7)
rate=bw*min_rtt*rmult[idx]

min_rtt_ts > 10s
---
save_cwnd=cwnd
cwnd=4
rate=bw*min_rtt*1
probe_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && fullbw>0 && est_bw == 0
--
cwnd=save_cwnd
idx=rand(2,7)
rate=bw*min_rtt*rmult[idx]

LostPacket
--
save_cwnd=cwnd
Update in_ ight
cwnd=in_ ight
high_water=last_sent

ACK && New
--
Update in_ ight
cwnd=in_ ight*2

ACK && New && pkt.ack >= high_water
--
cwnd=save_cwnd

ExponentialBacko

cwnd=1

loss > 50% && abs(bw-prev_bw) <= 1/8*bw && 4 rounds
--
est_bw=rate*min_rtt - drops
rate=est_b2*min_rtt
cwnd=est_bw*min_rtt*2

48 rounds
--
est_bw=0
idx=rand(2,7)
rate=est_bw*min_rtt*rmult[idx]

RTO Timeout
--
cwnd=1
fullbw=0
rto_timeout=2*rto_timeout

RTO Timeout
--
cwnd=1
rto_timeout=2*rto_timeout

ACK
--
cwnd=1
bw=0
fullbw=0

Init
--
cwnd=10
rate=10*handshake_rtt*(2/ln(2))
fullbw=0
min_rtt_ts=now()

ACK && New && MaxBW
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(2/ln(2))

ACK && New && MinRTT
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(2/ln(2))
min_rtt_ts=now()

ACK && New && MinRTT
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(ln(2)/2)
min_rtt_ts=now()

ACK && New && MaxBW
--
cwnd=bw*min_rtt*(2/ln(2))
rate=bw*min_rtt*(ln(2)/2)

ACK && New && MaxBW
--
cwnd=bw*min_rtt*2
rate=bw*min_rtt*rmult[idx]

ACK && New && MinRTT
--
cwnd=bw*min_rtt*2
rate=bw*min_rtt*rmult[idx]
min_rtt_ts=now()

min_rtt_ts > 10s
---
save_cwnd=cwnd
cwnd=4
rate=bw*min_rtt*1
probe_ts=now()

ACK && New && MinRTT
--
rate=bw*min_rtt*1
min_rtt_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && fullbw==0
--
cwnd=save_cwnd
rate=bw*min_rtt*(2/ln(2)) min_rtt_ts > 10s

---
save_cwnd=cwnd
cwnd=4
rate=bw*min_rtt*1
probe_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && est_bw > 0
--
cwnd=save_cwnd

ACK && New && MinRTT
--
cwnd=bw*min_rtt*2
rate=bw*min_rtt*1
min_rtt_ts=now()

1 round
--
idx=(idx+1)%8
rate=bw*min_rtt*rmult[idx]

RateLimited

ProbeBWDrainStartup

Recovery

Exponential
Backo

ProbeRTT

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 43 / 43

LINUX TCP BBR

Cristina Nita-Rotaru 43

} We extracted BBR FSM from code (not available anywhere)

aBBRate: Automating BBR Attack Exploration Using a Model-Based Approach A. 
Peterson, S. Jero, E. Hoque, D. Choffnes, C. Nita-Rotaru. RAID 2020



Evaluation

} Generated 30,297 attack strategies 
} 8,859 caused faster, slower or stalled connections 
} 14 – Faster

4,025 – Slower
4,820 – Stalled (transmission halts) 

} 5 classes of attacks

44

Attack class Impact
Optimistic acknowledgments Faster
Delayed acknowledgments Slower
Repeated Re-transmission timeout Slower
Re-transmission timeout stall Stalled
Sequence number de-sync stall Stalled

Cristina Nita-Rotaru



Optimistic ACK
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} When BBR probes for bandwidth, it sends 25% faster for 1 RTT 
} ACK rate follows the increased sending rate
} BBR believes the network can sustain the increased rate 

Attack 1 – Optimistic acknowledgments

Increased sending rate
How?

1 Always ACK highest observed data sequence

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2

ACK 1

ACK 2 ACK 2

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 23 / 43

ACK highest observed data sequence, 
makes the sender send faster 

Attack 1 – Optimistic acknowledgments

Why?
1 When BBR probes for bandwidth, it sends 25% faster for 1 RTT

2 The ACK rate follows the increased sending rate

3 BBR believes the network can sustain the increased rate

time

bytes

RTT

Data sent
Data ACKed

ack_rate after 
attack

ack_rate before 
attack

BBR sending
25% faster

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 24 / 43



Delayed ACK
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} Initial delay in ACKs at sender
} Sender stops sending data because no data is ACKed
} BBR believes the bottleneck bandwidth is smaller than reality
} Takes effect after 10 RTTs, due to bottleneck bandwidth filter 

Attack 2 – Delayed acknowledgments

Decreased sending rate
How?

1 Delay ACKs for a constant amount of time

sender receiverattacker

DATA 1

DATA 1

ACK 1

ACK 1

delay

DATA 2

DATA 2

ACK 2

ACK 2

delay

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 25 / 43

Attack 2 – Delayed acknowledgments

Why?
1 Initial delay in ACKs at sender

2 Sender stops sending data because no data is ACKed

3 BBR believes the bottleneck bandwidth is smaller than reality

time

bytes

Data packets
ACKs
Delivery rate samples

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 26 / 43
Delay ACKs for a constant amount of time 



Repeated retranssmission timeout
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} Until RTO occurs, sender waits 
and does not send data 

} A lot of time is wasted idling
} Data is sent in small bursts 

between RTOs 

Attack 3 – Repeated Re-transmission timeout

Decreased sending rate
How?

1 Cause sender to RTO (re-transmission timeout)

2 Immediately following, allow through some ACKs then repeat

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4ACK 2

ACK 4

RTO

Limit ACKs Stretch ACKs
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Attack 3 – Repeated Re-transmission timeout

Decreased sending rate
How?

1 Cause sender to RTO (re-transmission timeout)

2 Immediately following, allow through some ACKs then repeat

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4ACK 2

ACK 4

RTO

Limit ACKs Stretch ACKs
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Attack 3 – Repeated Re-transmission timeout

Why?
1 Until RTO occurs, sender waits and does not send data

2 A lot of time is wasted idling

3 Data is sent in small bursts between RTOs

time

bytes

Data packets
ACKs

RTO

RTO

re-transmitted
segments

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 29 / 43

Limit ACKs 

Stretch ACKs 



Re-transmission timeout Stall 
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} If no new data is ACKed, 
no new data will be sent 

Attack 4 – Re-transmission timeout Stall

Stalled connection:
How?

1 Prevent new data from being ACKed

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4

RTO

Limit ACKs Drop ACKs
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Attack 4 – Re-transmission timeout Stall

Stalled connection:
How?

1 Prevent new data from being ACKed

sender receiverattacker

DATA 1

DATA 1

ACK 1

DATA 2

DATA 2
DATA 3

DATA 3

ACK 2

ACK 3ACK 1

ACK 1

ACK 1

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

DATA 3
DATA 4

DATA 4RTO ACK 1

ACK 2

ACK 3

ACK 4

RTO

Limit ACKs Drop ACKs
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Attack 4 – Re-transmission timeout Stall

Why?
1 If no new data is ACKed, no new data will be sent

time

bytes

Data packets
ACKs

re-transmissions

re-tranmissions are 
never ACKed

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 31 / 43

Limit ACKs 

Drop ACKs 



Attacks ineffective against TCP BBR
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Divided Acknowledgments

How?

Attacker divides single ACK into n smaller ACKs

Why is BBR immune to this attack?

BBR only computes delivery rate samples for segments that the ACK

specifically acknowledges

sender receiverattacker
DATA (0:1500)

ACK (1500)

DATA (0:1500)

ACK (500)

ACK (1000)

ACK (1500)

not used
to compute
delivery rate
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Acknowledgment Bursts

How?

Attacker accumulates n ACKs and sends in a burst

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

ACK 1
DATA 3

ACK 2

ACK 3

ACKs 1, 2 & 3

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 35 / 43

Duplicate Acknowledgments

How?

Duplicate single ACK n times

Why is BBR immune to this attack?

BBR does not use packet loss to signal congestion

Duplicate ACKs are not used to compute delivery rate samples

sender receiverattacker

DATA 1

ACK 1

ACK 1

not used
to compute
delivery rate

DATA 1

ACK 1

ACK 1

ACK 1

Anthony Peterson (NEU) Automated Attack Discovery in TCP BBR 38 / 43

Attacker accumulates n 
ACKs and sends in a burst 

BBR immune 
because it  sends 
data proportional to 
average ACK rate over 
RTT intervals 

Attacker divides single 
ACK into n smaller ACKs 

BBR immune because it 
only computes delivery 
rate samples for segments 
that the ACK specifically 
acknowledges 

Duplicate single ACK 
n times 

BBR immune because it 
does not use packet loss to 
signal congestion,  duplicate 
ACKs are not used to compute 
delivery rate samples 

Duplicate ACKs ACKs Bursts Divided ACKs 



Summary

} Show how to find 
automatically attacks in 
TCP implementations 
without instrumenting the 
code
} Connection establishment
} Congestion control
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Check out the code! 
https://github.com/samueljero/snake

https://github.com/samueljero/TCPwn

Cristina Nita-Rotaru

ISEC Building
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