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Abstract—Most machine learning applications rely on central-
ized learning processes, opening up the risk of exposure of their
training datasets. While federated learning (FL) mitigates to some
extent these privacy risks, it relies on a trusted aggregation server
for training a shared global model. Recently, new distributed
learning architectures based on Peer-to-Peer Federated Learning
(P2PFL) offer advantages in terms of both privacy and reliability.
Still, their resilience to poisoning attacks during training has
not been investigated. In this paper, we propose new backdoor
attacks for P2PFL that leverage structural graph properties
to select the malicious nodes, and achieve high attack success,
while remaining stealthy. We evaluate our attacks under various
realistic conditions, including multiple graph topologies, limited
adversarial visibility of the network, and clients with non-IID
data. Finally, we show the limitations of existing defenses adapted
from FL and design a new defense that successfully mitigates the
backdoor attacks, without an impact on model accuracy.

I. INTRODUCTION

Recently, machine learning (ML) has transformed a vari-
ety of real-life applications including self-driving cars [1],
recommendation engines [2], and personalized health [3]. A
common thread to all these applications is data centralization,
where a significant amount of data is collected for training
ML models, a process that introduces risks to the privacy of
users contributing their datasets. Several regulations such as
the General Data Protection Regulation (GDPR) [4] and the
California Consumer Privacy Act (CCPA) [5] were specifically
designed to protect data privacy.

To address the privacy concerns of centralized learning,
McMahan et al. [6], and Konecny et al. [7] proposed Fed-
erated Learning (FL), a paradigm that trains ML models in
a distributed fashion. In FL, personal data never leaves the
device. Instead, devices individually update a global model
and share their model updates with a central server, which
aggregates them and re-distributes the new global model to
the clients. Privacy in FL can be enhanced with Multi-Party
Computation (MPC) [8] and differential privacy [9], but most
FL deployments do not utilize these technologies and are
vulnerable to privacy attacks [10], [11].

In response to the privacy and reliability risks of FL with a
single aggregation server, protocols for Peer-to-Peer Federated
Learning (P2PFL) have been proposed [12]–[18]. In P2PFL
nodes communicate with their peers in the network and ag-
gregate the model updates received from their peers. Multiple
aspects of P2PFL have been studied, including adversarial set-
tings (Byzantine [19] vs non-Byzantine [20]), the P2P network
topology (complete graphs [19] vs non-complete graphs [14]),

and the output of the learning protocol (global model learned
by all peers [19] vs. personalized models [12]).

Real-life deployments of FL [21], [22] raised concerns about
adversarial attacks such as poisoning. While such attacks have
been extensively studied in centralized learning [23]–[31], they
are more feasible in Federated Learning because adversaries
can own or compromise mobile devices and participate in
the FL training process. Attack vectors in FL include data
poisoning [32], and model poisoning [33], [34], where the
attacker aims to pursue availability, targeted, or backdoor
attacks. The objective of an availability attack is to decrease
model accuracy and its utility [35], [36], while targeted and
backdoor attacks [37], [38] impact only a subpopulation of
samples without dropping the overall model accuracy.

To date, sophisticated data poisoning attacks with stealthy
objectives such as backdoor and targeted attacks have not
been studied in P2PFL. In addition, most P2PFL systems [15],
[16], [19] either consider that the P2P network topology is
a complete graph or do not mention the topology at all.
Complete network topologies have inherent scalability issues
and extremely high network bandwidth costs. In practical de-
ployments of P2PFL, such connectivity assumptions are almost
infeasible to satisfy, thus it is important to study attacks in
P2PFL considering realistic network topologies.

In this paper, we propose and evaluate backdoor attacks in
P2PFL where the adversary controlling a small set of nodes,
has two goals: remaining stealthy, and achieving high attack
success on samples with the backdoor pattern. These goals
are conflicting and difficult to achieve simultaneously: as the
attack becomes more successful it likely causes degradation
in model accuracy, which can be detected by defenders. We
consider realistic graph topologies [39]–[42] in which attackers
can leverage information about the graph structure to increase
the effectiveness of their attack. Specifically, our contributions
are:
• We present a modular architecture for P2PFL that supports

diverse network topologies and separates the learning graph
from the communication graph to study poisoning attacks in
realistic settings. Our current implementation uses GossipSub
as the communication layer and P2P gradient averaging as the
learning protocol. All code is publicly released1.
• We propose backdoor attacks in P2PFL and introduce new

attack placement strategies based on graph centrality metrics.

1https://github.com/gokberkyar/BP2PFL



We show that a small number of attackers (5%) placed in
the graph strategically, is sufficient to perform a backdoor
attack with high attack success without decreasing the model
accuracy for multiple graph topologies. We show that backdoor
attacks can further be amplified by the attacker causing network
failures that result in missed peer updates. We also demonstrate
that an attacker with partial visibility into the network (e.g.,
20% of the nodes) can still successfully introduce a backdoor
in the model.

• Our paper is the first extensive study on the impact of
P2PFL backdoor attacks on various learning network topolo-
gies. Our study shows that the Barabasi-Albert scale-free
network is the most vulnerable due to the presence of “hubs”
(highly connected nodes). In a strategically placed attack,
compromising the hub nodes will result in a particularly strong
backdoor attack.

• We introduce a new P2P defense based on weighting a
node’s contribution higher than the contributions of its peers
when training each model. We propose a defense that uses two
different clipping norms, one for peer updates, and one for local
models, and thus bounds the contribution of a node’s neighbors
to effectively prevent backdoor attacks.

• We analyze the impact of label imbalance in non-IID
settings, where peers have different data distributions. We
show that the non-IID model converges slower than IID to
correctly classify clean data due to heterogeneity in local
updates, however, the attack is still able to induce a high level
of misclassification.

II. THREAT MODEL

Adversarial goal. An attacker may perform poisoning attacks
with different goals, such as availability, targeted, or backdoor
attacks. In this paper, we focus on backdoor attacks due to their
particularly insidious nature and the feasibility of having mali-
cious participants in P2P protocols. In backdoor attacks, the ad-
versary has two goals: 1) Remaining stealthy, and 2) Achieving
high attack success on backdoored samples. These objectives
are conflicting and difficult to achieve simultaneously: as the
attack becomes more successful at inducing misclassifications
on backdoored samples, it likely causes degradation in model
accuracy, which can be detected by defenders.

Adversary participation in the P2PFL protocol. As P2PFL
is an open system, we will assume the attacker either controls
or compromises a number of k peers, where k < N , with
N the total number of peers in the system. Compromising a
peer in this context might be easier than compromising a well-
protected aggregation server in FL.

Attacker capabilities. We assume that the attacker has full
control over compromised peers. More precisely, the attacker
can add, modify, or delete training data samples, modify and
deviate from the machine learning algorithm, as long the final
model update has the same vector dimension as the model
updates sent by benign users. For example, the attacker can
increase the number of local epochs used in training, change
the learning rate of the model, or even apply a new learning ob-
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Fig. 1. P2PFL Architecture Overview: A peer has 3 roles: 1) Forwarding
network packages (Communication Layer); 2) Sending and receiving ML
updates to data peers (Learning Layer); 3) Running ML training on local
dataset, aggregating updates received by the Learning Layer, and sharing back
with the Learning Layer for the next round (ML Module).

jective function. The attacker can only observe model updates
received from his peers.

Additionally, the attacker has network-level capabilities. In
our strongest attack model, the attacker has full visibility of
the peer connections and may use this knowledge to select
and compromise the most critical nodes in the communication
graph. Powerful attackers are relevant in evaluating and com-
paring mitigation strategies. We also consider a more relaxed
adversarial model in which the adversary has partial visibility
over the network, by observing a small fraction (e.g., 20%) of
the nodes in the communication graph.

Attacker strategy. Backdoor attacks have three components in
P2PFL: pre-training phase, training time phase, and inference
phase. In the pre-training phase, the adversary injects the
desired backdoor (computed via standard methods [43]) into a
subset of the training data at compromised peers. Specifically,
if the attacker compromises peer i, has full access to Di and
picks a Poisoning Data Ratio (PDR), then injects PDR · |Di|
backdoored samples into the training dataset. In the training
phase, the adversary modifies the hyper-parameters of the local
training and modifies model weights to conduct the model
poisoning attack, introduced for FL [34]. Finally, at inference
time, if the adversary wishes to change the prediction of a
certain sample, it injects the desired backdoor pattern.

III. P2P FEDERATED ARCHITECTURE

We introduce the P2PFL architecture, the design decisions,
and the Personalized Peer-to-Peer Averaging Algorithm.

A. P2PFL Architecture Design

As previous P2P learning systems assumed a connected
graph for communication [19], we consider realistic network
topologies and create a modular architecture shown in Figure 1
that separates the learning and communication graphs.

We define the learning topology as a graph in which peers
are connected if they exchange model updates during training.
We call these peers learning peers. We define the communi-
cation topology as the graph in which peers are connected if
they can route network packets between them. The learning
and communication topologies are shown in Figure 2. To
distinguish the communication and learning topologies, we



Fig. 2. Communication topology is shown by the gray plane, learning topology
uses the underlying communication topology to exchange updates.

design P2PFL as an application that runs over the GossipSub
protocol [44]. GossipSub constructs a mesh where nodes can
publish their updates or subscribe to other nodes’ updates, and
has been shown to successfully balance excessive bandwidth
consumption and fast message propagation [44]. When node A
wants to communicate to node B, messages cannot be directly
passed from A to B with a TCP connection, but rather A
publishes its update into a channel that B subscribed into.
We call these peers communication peers. This design choice
provides better network bandwidth utilization and robustness
to network failures.

B. P2P Gradient Averaging Algorithm

While our architecture supports different ML algorithms,
we use P2P Gradient Averaging (Algorithm 1), based on the
standard Federated Averaging algorithm [6], [45]. Each node
trains a personalized model using the updates received from its
neighbor set in the learning graph.

Algorithm 1: Personalized Peer-to-Peer Gradient Av-
eraging

Data: Local Dataset D, rounds TN , peer set S
Function P2PAverage():

f0 = GETINITIALMODEL(0)
for t ∈ [1, TN ] do

// Compute local update using SGD
At = COMPUTELOCALUPDATE(ft−1, D)
// In parallel send and receive updates
U t = GETUPDATES(S)
SENDUPDATE(At, S)
ft = AGGREGATE(At, U t)

return fn

Specifically, each node participating in the protocol owns its
private training dataset D, a set of peer nodes S, to which the
node can exchange model updates and its personalized model
ft at round t. Each node synchronously trains its personalized
model ft at round t by computing its local update At using
its private dataset D, and then aggregating with the previous
round’s personalized model ft−1, and model updates received
from its peers U t. For the aggregation step, we average all
the model updates received from the neighboring peers. The
framework supports the use of more advanced Byzantine robust
aggregation functions such as KRUM [46] and Bulyan [47] that
have been proposed for poisoning defense in FL. We adapt

the Trimmed Mean [48] and gradient clipping [34], [37] FL
defenses to the P2PFL setting.

IV. BACKDOOR ATTACKS ON P2P FEDERATED LEARNING

In this section we describe the backdoor attacks we propose
for P2PFL and discuss different attack strategies that select
relevant peers based on graph centrality metrics.

A. Backdoor Attack on P2PFL

We assume the adversary has full access to the peer’s private
training data, model weights, and other training parameters
in each compromised peer and runs a backdoor attack on
each compromised peer using Algorithm 2. The attacker uses
the BadNets attack by Gu et al. [43], amplified by a model
poisoning attack [34], [37]. The attacker chooses a Poisoning
Data Ratio and the Boosting Factor to amplify the contribution
of the local model. Increasing the Poisoning Data Ratio and
Boosting Factor increases the attack success, but also causes a
drop in test accuracy as a side effect.

Algorithm 2: P2P Backdoor Attack Single Node
Data: Target Node target, Local Dataset D, rounds TN , peer

set S, poison data rate PDR, boosting factor B, target
class Ct

Function AttackSingle(target, PDR,B,Ct):
f0 = GETINITIALMODEL(0)
D∗ = BACKDOORDATASET(D,PDR,Ct)
for t ∈ [1, TN ] do

// Compute local update on Backdoored Dataset
At = COMPUTELOCALUPDATE(ft−1, D

∗)
// Do model poisoning attack by boosting
At∗ = MODELPOISONUPDATE(At, B)
// In parallel send and receive updates
U t = GETUPDATES(S)
// Send malicious updates
SENDUPDATE(At∗ , S)
ft = AGGREGATE(At∗ , U t)

B. Stronger Structural Graph Attacks

The P2PFL protocol runs on a non-complete graph topology,
thus not all peers have an equal impact when used by the
attacker. One natural question that the adversary must answer
is how to choose the k peers for attack, among all n peers
available in the system. For example, if the attacker has budget
for compromising only 5% of all nodes, how can the adversary
maximize its adversarial goal by carefully selecting those
attacker nodes?

One simple strategy for the attacker is to select the adver-
sarial nodes randomly. However, considering the P2P nature of
the system, a natural approach is to select nodes that are well
connected in the graph and have high centrality measures. We
introduce several attack strategies based on four well-known
graph centrality metrics: maximum degree, Effective Network
Size [49], PageRank scores [50], and maximum clustering
coefficient [51].



Maximum degree. Nodes with the highest degree in the graph
allow the attacker to propagate malicious updates to a large
number of neighbors.
ENS score. The effective network size (ENS) of a node’s ego
network can be computed as:

e(u) = n− 2t/n (1)

where t is the number of ties in the ego network (not including
ties to the node itself) and n is the number of nodes in the ego
network. A recent work on cyber network resilience against
self-propagating malware [52] observed that nodes with the
highest ENS tend to act as bridges between two dense clusters
and monitoring them prevents attack spreading. Our insight is
that instead of using ENS for robustness, we select nodes with
largest ENS scores to enable the attacker to traverse bridges in
the network and compromise different clusters.
PageRank score. The PageRank score computes a ranking of
the nodes in graph G based on the structure of the incoming
links [50] and provides a metric of centrality and node im-
portance in the graph. As PageRank showed empirical success
on sparse graphs and the attacker’s goal is to identify critical
nodes, we leverage nodes with highest PageRank score as a
viable attack selection strategy.
Maximum clustering coefficient. For unweighted graphs, the
clustering coefficient of a node is the ratio of possible triangles
through that node:

cu =
2T (u)

deg(u)(deg(u)− 1)
(2)

where T (u) is the number of triangles through node u and
deg(u) is the degree of node u [51]. We select this metric as
nodes with highest clustering coefficient tend to have a more
connected local neighborhood where the malicious updates can
propagate.

C. Quantifying Attack Success

The attacker has two objectives: 1) Performing a successful
backdoor attack, and 2) Remaining stealthy so that the attack is
not detected by monitoring the model’s accuracy. We quantify
these goals with two metrics used in the poisoning literature:
(1) Attack Success, denoting the fraction of poisoned samples
that were incorrectly classified as belonging to attacker’s target
class, and (2) Test Accuracy, representing the fraction of clean
samples that were correctly classified. These two metrics are
averaged across all participants. To evaluate the attack we
use an auxiliary test set partitioned into two non-overlapping
subsets: a clean dataset, and a backdoored dataset, on which
we compute the test accuracy and attack success, respectively.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the effectiveness of the attacks
presented in Section IV. We first introduce our experimental
setup, then evaluate the effectiveness of attacks under several
settings, by seeking to answer the following questions:

• What node selection strategy provides most benefit to the
adversary?

• What graph topology is more impacted by attacks?
• How does compromising more peers affect the attack?
• What is the impact of link failures on backdoor attacks?
• How does the data distribution impact the attack?
• What is the effect of constraining the adversary to a

limited view of the network?

A. Experimental Setup
Network topology. We study three representative network
topologies, which have been widely used to model complex
networks: (i) Random graphs (Erdos-Renyi) [53]; (ii) Small-
world graphs (Watts-Strogatz) [54]; and (iii) Scale-free graphs
(Barabasi-Albert) [55].

Small-world graphs are characterized by a small average
path length and high clustering coefficient, properties that have
been observed in real-world networks [56]. In both random
and small-world networks, nodes have comparable degrees,
and, thus, the average can be viewed as the “scale” of the
network. In contrast, in scale-free networks, the fluctuations
from the average are large, with a few highly connected nodes
serving as “hubs”, while the vast majority have low degrees.
The Internet is an example of a scale-free network, where the
degree distribution is shaped by the “preferential attachment”
to a small number of popular hubs [55].

Table I summarizes the parameters of the three topologies
used in this study for a 60-node size network. We also ex-
perimented with smaller and larger networks from 30 to 100
nodes.

Parameter Erdos R. Watts S. Barabasi A. Complete
# nodes 60.00 60.00 60.00 60.00
# edges 166.00 360.00 576.00 1770.00
Mean Degree 5.53 12.00 19.20 59.00
Density 0.09 0.20 0.33 1.00
Diameter 5.00 3.00 3.00 1.00
Radius 3.00 2.00 2.00 1.00
Mean Distance 2.56 1.88 1.68 1.00
Transivity 0.10 0.24 0.39 1.00
Clustering coef. 0.09 0.24 0.41 1.00

TABLE I
CHARACTERISTICS OF NETWORK TOPOLOGIES USED IN THIS STUDY.

Datasets. We used the EMNIST [57], FashionMNIST [58] and
MNIST [59] datasets featuring 28 × 28 pixel images labeled
to one of 10 classes. The partitioning method among peers
has a large impact on the ML model, generating peer datasets
that fall into two broad categories: independently and iden-
tically distributed (IID), and non-independent and identically
distributed (non-IID). Non-IID data distribution is a common
challenge in FL [60]. In our paper, we analyze the attack
performance in both IID and non-IID settings. In the IID
setting, each client receives an equal number of samples of
each label, while in the non-IID setting, each client is allocated
a proportion of the samples of each label according to the
Dirichlet distribution [61].
Parameters. The attack is characterized by the following
parameters: k, the number of malicious peers; PDR, the ratio of



poisoned data over total samples in a malicious peer; boosting
factor used in the model poisoning attack; adversarial training
epoch count; and target class. We experimented with multiple
values of these parameters. Here, we discuss the attack impact
for various numbers of adversaries (k), while fixing the PDR
to 0.5, the boosting factor to 10, adversarial training epoch
count to 5, and the target class to 2. Results shown for various
strategies and parameters are averaged over three different runs.
Default configuration. Unless otherwise specified, the exper-
iments use the PageRank selection strategy on Watts Strogatz
60-node topology with 5% adversarial nodes. Furthermore,
our default configuration uses the EMNIST dataset. Each peer
receives a total of 5200 samples during training, with an equal
number of samples per class (IID distribution).

B. Adversary’s Node Selection Strategy

We evaluate the success of the attack for the node selection
strategies introduced in Section IV-B: Random, Degree, ENS,
PageRank, and Clustering. Figure 3 shows the evolution of
P2PFL model’s performance across training rounds. The test
accuracy of the backdoored model on clean data converges
similarly for all five attack strategies, and eventually reaches
0.97. In practice, the training may stop after a certain accuracy
has been reached. Therefore, in Figure 3b we evaluate the
attack success at high test accuracies. We notice a significant
difference between the four attack strategies for accuracies
in the low 90s (i.e., 0.9, 0.93), with the centrality-based
methods Degree, ENS and PageRank being consistently on top,
generally twice more successful than Random at misclassifiying
the adversarial test samples. Once the model converges to 0.97
accuracy, the attack is highly successful regardless of the node
selection method.

(a) Test Accuracy (b) Attack Success

Fig. 3. Adversary’s node selection strategy: (a) accuracy of the backdoored
model on clean test data. (b) attack success (y-axis) of various strategies after
the backdoored model has reached high accuracy (x-axis).

C. Network Topology

We study the impact of the network topology on the attack.
We compare the three types of graphs described in Table I:
Erdos Renyi, Watts Strogatz, and Barabasi Albert, under a
PageRank-based attack strategy. These graph models are typi-
cally used to analyze the behavior of social media and cellular
network graphs, with previous work suggesting that P2PFL
networks will most likely be small-world networks [39]–[42].
Figure 4a presents the accuracy of the backdoored P2PFL

(a) Test Accuracy (b) Attack Success

Fig. 4. Impact of network topology on attack performance: (a) accuracy
evolution; (b) attack success (y-axis) on various topologies after the backdoored
model has reached high accuracy (x-axis). Within 200 rounds of training, the
Barabasi topology has not exceeded 0.95 test accuracy (hence, the figure omits
Barabasi at 0.97 accuracy).

model across multiple rounds of training, and Figure 4b il-
lustrates the attack success after the model has reached high
accuracy (≥ 0.9) on clean data. These results point out a major
insight: Barabasi scale-free network is the most vulnerable,
due to the presence of highly connected nodes (hubs) that are
selected with PageRank as the target of attack. The backdoored
model becomes highly successful within 200 rounds of training
on all topologies, learning to classify clean samples correctly
(accuracy ≥ 0.95), but also to misclassify poisoned samples
(0.99 attack success).

D. Scaling Up the Attack

Figure 5a shows that the attack scales well with the number
of adversarial nodes. Given a desired test accuracy, (i.e., 0.8,
0.9, 0.93, 0.96 in the figure), we evaluate the attack success
for 1 to 6 compromised nodes selected with the PageRank
strategy, on the 60-node Watts Strogatz topology. Note that our
previous experiments have used only 3 adversarial nodes (i.e.,
5%) while still delivering high performance. We also analyzed
scaling to larger networks of 80 and 100 nodes, with expected
results (not shown in figure): the convergence speed slightly
decreases as the system scales up, however the attack is still
highly successful.

(a) Adversarial Nodes (b) Fault Tolerance

Fig. 5. (a) Increasing the number of compromised nodes within a 60-node
network. (b) Increasing the number of failed connections to neighbors (i.e.,
missed updates), with 3 compromised nodes.

E. Fault Tolerance

As P2PFL is a collaborative distributed system, node failures
are inevitable, and any P2PFL system should be tolerant to
failures. In our study, we assume failures affect random nodes,



and result in missed peer updates that do not contribute to the
learned model. Figure 5b measures the impact of 0, 2, 4, and 6
failed neighboring links per peer. Missing updates is generally
in attacker’s favor at lower accuracies of 0.8 and 0.9. As the
model learns to classify clean data better (accuracy of 0.95 and
0.97), missed updates do not continue to aid the attack.

F. Impact of Dataset

In the previous experiments, we have shown that the P2P
backdoor attack is highly successful on the EMNIST dataset.
In this section, we explore its transferability to other datasets:
MNIST and Fashion MNIST. These latter datasets are about
5× smaller than EMNIST, therefore we reduce the number of
peers to 30. We ensure that training is carried out on the same
number of samples (based on the size of the smallest training
dataset, MNIST), i.e., 1800 samples per client.

(a) Test Accuracy (b) Attack Success

Fig. 6. Datasets comparison: (a) accuracy and (b) attack success of the
backdoored P2PFL model. Configuration: 30 peers, 3 malicious nodes, Watts-
Strogatz topology with PageRank attack.

Figure 6a presents the evolution of accuracy while training
the P2PFL backdoored model. We observe that the model
converges at different speeds for the various datasets. After
200 rounds of training, Fashion MNIST reaches 0.76 accuracy,
EMNIST 0.91 and MNIST 0.98. We further note that the
PageRank-based attack is highly successful at misclassifying
poisoned samples on all datasets (Figure 6b), demonstrating
that backdoor attacks are a valid threat for multiple applica-
tions. We notice an early peak in attack success when accuracy
is still very low, indicating that malicious nodes (whose impact
is amplified by gradient boosting) are more effective in the
first rounds, before their contribution is offset by the honest
majority. Reducing the boosting factor (we experimented with
values of 10, 5, and 1) or the number of malicious peers has
the effect of decreasing this early peek.

G. Impact of Data Distribution

We next compare the attack’s performance (PageRank strat-
egy) in IID settings (where nodes have an equal number of
samples of each label), against non-IID settings (where nodes
are allocated different numbers of samples of each class).
We model the label imbalance of non-IID using the Dirichlet
distribution [61], which is a common choice for simulating real-
world data partitioning [60], [62]. The Dirichlet distribution
is denoted Dir(α). The concentration parameter α controls
the degree of similarity between peers. As α → ∞, peers’

distributions become identical, whereas as α → 0, distributions
become extremely imbalanced, with each class residing on
separate peers.

Figure 7 compares IID against non-IID for three values
of α: 10, 1, and 0.1. We observe that learning becomes
more challenging in non-IID settings as the class imbalance
increases (i.e., for smaller α). Heterogeneity in the peers’ local
datasets leads to large variations in local updates performed
by peers [60]. As a results, accuracy convergences slower
(Figure 7a) and the attack is more successful in inducing
misclassifications (Figure 7b). In non-IID settings, where the
class distribution is more skewed towards a subset of peers,
we end up with fewer honest peers holding enough correctly
labeled samples of each class. Thus, the honest updates are
overpowered by the boosted adversarial updates, and a correct
prediction for samples belonging to the target class is more
difficult to learn (see non-IID α = 0.1 from Figure 7b).

(a) Test Accuracy (b) Attack Success

Fig. 7. Impact of data distribution: IID and non-IID settings for three values
of the concentration parameter α: 10, 1, and 0.1.

H. Constrained Adversary with Partial View of the Graph

In this section, we evaluate a constrained adversarial strategy,
in which the attacker’s view is restricted to a subset of the
network. In our analysis, the observable subgraph represents
20% of the nodes in the network. The initial visible node is
randomly chosen, while other nodes are added to the observable
subset based on an exponential decay formula, pd, were p is
a probability parameter and d is the depth (i.e., number of
hops) from the initial node. In our experiments, nodes that are
further than 3-hops away (d > 3) have a zero probability of
joining the observable subset (p = 0), otherwise p = 0.5. The
attacker is restricted to applying his node selection strategies
to the observable subset.

Figure 8 compares the constrained attacker (Partial view)
against an attacker with full view of the network (Global view)
under the PageRank-based attack. We observe that accuracy
on clean test data converges similarly, regardless of attacker’s
view (Figure 8a), and reaches 0.97 in all cases. Figure 8b
analyzes the attack success of the backdoored P2PFL model at
high accuracies (≥ 0.9). For IID, the Global view consistently
achieves higher attack performance compared to the Partial
view. However, non-IID settings (illustrated for concentration
parameter α = 10) present a high variability, with the data
distribution having a stronger impact on attacker’s success than
the observability restriction. Once the model has converged,



(a) Test Accuracy (b) Attack Success

Fig. 8. Constraining the adversary’s view. We compare the Global with the
Partial View in IID and non-IID (α = 10) settings. (a) test accuracy on clean
data; (b) attack success after the backdoored model has reached high accuracy.

non-IID and IID achieve the same level of attack success: 0.99
with Global view and 0.98 with Partial view.

VI. DEFENSE

We first discuss standard defenses against poisoning attacks
in FL and show empirical evidence that these defenses are
ineffective, achieve slower convergence, and reduce the model
accuracy. We then propose a new defense against poisoning in
P2PFL and show experimentally that our defense counteracts
backdoor attacks without a significant drop in model accuracy.

A. Existing Defenses

Existing defenses in FL rely on either robust aggregation
functions [46]–[48] that exclude some of the outlying client
updates from the model, or gradient clipping techniques [19],
[37], [63] that limit the contributions of each client to the
model update. We select a defense from each class: Trimmed
Mean [48] and gradient clipping [37], adapt them to P2PFL,
and evaluate them against the backdoor attacks.
Robust Aggregation. We adapt Trimmed Mean [48] to P2PFL,
by sorting all the peer updates and filtering out the p highest
and lowest values and averaging the remaining updates. In our
experiments (Figure 9), we observed for p = 1 that Trimmed
Mean is not effective against the backdoor attacks in P2PFL,
as the attacker still achieves 100% attack success. Additionally,
the learning procedure is slowed down, and accuracy converges
slower than the “No Defense” case.
Clipping Defense. Gradient clipping represents another stan-
dard defense against poisoning attacks in FL. The most dev-
astating poisoning attack in FL is model poisoning, where the
contribution of each compromised node is amplified by the
boosting factor applied to the local model. In the extreme,
a model boosting attack could overwrite the global model,
and therefore gradient clipping is critical for limiting the
contribution of individual clients. In gradient clipping in FL,
the server bounds the update sent by each participant by a
threshold norm C before aggregation. We adapt this defense
to the P2PFL setting that does not rely on a trusted server to
aggregate and bound updates. Instead, each peer rescales all
updates which contribute to its model using:

U t
j,C = U t

j/max(1, ||U t
j ||/C) (3)

U t
j is the update sent by peer j at round t, ||U t

j || is the ℓ2 norm
of the peer update, and C is the clipping norm. Selecting the
clipping norm C is not straightforward, as there is a tradeoff
between attack success and test accuracy. A large C reduces
the impact of the defense, while a small C reduces the test
accuracy. A node can generally trust its own updates, but
bounding only neighbors’ contributions and not its own offsets
the benefit of using P2PFL instead of local training. Similarly,
setting the clipping norm too small will reduce the benefit of
aggregating updates from neighbors. On the other hand, a large
norm enables potential attacks to be aggregated into the model.

We implemented our framework in Python’s deep learning
API Keras using the Adam optimizer — a stochastic gradient
descent method based on adaptive estimation of first-order and
second-order gradients. For each peer, we extract the weights of
the current model, rescale them to fit within the clipped norm,
and then apply the rescaled weights to update the model. To
limit the contribution of malicious peers in P2PFL we first
experimented with small clipping values (0.05), but the model
did not converge. Next, we selected clipping norm values of
0.25, 0.5, and 1 and present results with these clipping norms
in Figure 9. The 0.25 norm reduces the attack success from 1
to 0.4 (Figure 9b) but at a high cost on accuracy. The larger
norms impose a smaller cost on accuracy, as the attack picks
up, approaching the “No Defense” success of 1.0.

(a) Test Accuracy (b) Attack Success

Fig. 9. Defenses: (a) accuracy and (b) attack success on poisoned samples with
60-node Watts Strogatz topology, 10% adversarial nodes, PageRank strategy.

B. Our Defense

We showed in the previous section that standard gradient
clipping (that uses a single norm for all participants) is inef-
fective in P2PFL settings. If the clipping norm for malicious
peers is too large, the malicious updates will be aggregated
into the local model. If the clipping norm for the local model
is too small, the model’s convergence is significantly impacted.
Due to these two conflicting requirements of the clipping norm,
we propose using two different clipping norm values, one for
bounding the neighbor peers’ updates and one for the local
model. We have the flexibility to select a smaller norm for
neighbor peers and a larger norm for the local model. We
choose the neighboring norm as 0.1 and the local norm as 1,
after experimenting with multiple values. In Figure 9 we study
the effectiveness of using two separate clipping norms as a
defense strategy against the PageRank-based poisoning attack.



We observe that after 200 rounds of training, the attack success
is 0, while accuracy reaches 0.96.

(a) Test Accuracy (b) Attack Success

Fig. 10. Defenses in IID versus non-IID (α = 1) settings: (a) accuracy and
(b) attack success on poisoned samples. Configuration: 60-node Watts Strogatz
topology, 5% adversarial nodes selected with the PageRank strategy.

While these experiments were carried out in IID settings,
we also evaluated our defense with non-IID data distributions
where the clients receive different numbers of samples per class
(with α = 1). These results are represented in Figure 10. As
previously noted (Figure 7a), accuracy converges slower in non-
IID even without defenses. The clipping process imposes an
additional slowdown on accuracy convergence. However, our
defense helps to correctly classify poisoned samples, and thus,
significantly reduces the attack success in both IID and non-IID
settings. Figure 10b shows that within 100 rounds of training,
the attack is essentially stifled (success rate of 0).

Our two-norm defense is the only strategy we are aware of
that is effective against P2PFL backdoor attacks, and it obtains
better accuracy under attack than Trimmed Mean and gradient
clipping. The main insight behind the defense is that the trusted
local model of a node is given a higher weight, while the peer
models are assigned lower weight, limiting their contribution to
the node’s final model. The defense can be extended by using
different weights for neighboring peers, based on the level of
trust a node has for each peer. We leave this as an exploration
for future work, in addition to testing the impact of poisoning
attacks and defenses in P2PFL using other datasets and model
architectures.

VII. RELATED WORK

We review related work in three areas: P2PFL algorithms,
FL poisoning attacks, and emergent FL architectures.

Peer-to-peer Federated Learning. Federated Learning [6], [7]
trains ML models collaboratively to preserve data privacy. Peer-
to-Peer Federated Learning is a distributed learning paradigm
that removes dependence on a trusted aggregation server. [20]
proposed a fast algorithm for non-Byzantine settings, while
several works address the Byzantine model where compromised
nodes send arbitrary updates. [16] introduces coordinate de-
scent that is robust against Byzantine failures but not scalable,
while [15] designs a scalable algorithm for Byzantine faults.
[12] introduces personalized Byzantine robust P2P learning
for deep networks. [64] designs a clipping-based defense that
assigns weights to neighbor contributions for aggregation and

has provable convergence. None of these works study backdoor
attacks in P2PFL.
Poisoning and Backdoor Attacks in FL. Poisoning attacks,
including targeted and backdoor attacks have been extensively
studied in classical ML [23]–[31], and in FL [34], [37]. In
addition to standard poisoning attacks, recent work on network-
level adversaries in FL showed that adversaries might cleverly
drop network packets and significantly reduce the model’s
performance on sub-populations [65].
Edge Federated Learning. Recently, FL has been studied
in the context of edge computing [66], [67]. Edge federated
learning leverages data collected on widely dispersed edge
devices, such as IoT and new 5G technologies to learn a global
model shared by multiple decentralized edge clients.

VIII. CONCLUSION

We proposed a new modular P2PFL architecture that sepa-
rates the learning and communication graphs, and allows to em-
ulate a P2PFL system by instantiating real network topologies.
We studied backdoors attacks in P2PFL and showed that a small
number of attackers (5% of nodes) could achieve a high attack
success, without decreasing the model’s accuracy on clean data.
We showed that defenses proposed for centralized FL settings,
such as gradient clipping and Trimmed Mean, are ineffective
in P2PFL. We propose a new defense that uses a weighted
combination of the local model and model updates sent by a
node’s peer by assigning a higher weight to the trusted local
model. Our work opens up new avenues for experimenting with
other learning protocols in P2PFL architectures, and evaluating
other attacks and defenses.
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