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Abstract

Securegroupcommunicationis crucial for building dis-
tributed applicationsthat work in dynamicenvironments
andcommunicateover unsecurednetworks(e.g. theInter-
net). Key agreementis a critical part of providing security
servicesfor groupcommunicationsystems.Mostof thecur-
rentcontributorykey agreementprotocolsarenot designed
to toleratefailuresandmembershipchangesduring execu-
tion. In particular, nestedor cascadedgroupmembership
events(such aspartitions)arenot accommodated.

In this paper we presentthe first robust contributory
key agreementprotocolsresilientto anysequenceof events
while preserving the group communicationmembership
andorderingguarantees.

1 Introduction

Theexplosive growth of theInternethasincreasedboth
thenumberandthepopularityof applicationsthatrequirea
reliablegroupcommunicationinfrastructure,suchasvoice-
andvideo-conferencing,white-boards,distributedsimula-
tions,andreplicatedserversof all types.

Securegroupcommunicationis crucialfor building dis-
tributedapplicationsthat work in dynamicnetwork envi-
ronmentsandcommunicateover insecurenetworkssuchas
theglobalInternet.Key managementis thebasefor provid-
ing commonsecurityservices(datasecrecy, authentication
andintegrity) for groupcommunication.Thereareseveral
approachesto groupkey management.
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One approachrelies on a single, centralizedentity, to
generatekeysanddistributethemto thegroup.In thiscase,
aso-calledkey servermaintainslong-termsharedkeyswith
eachgroup memberin order to enablesecuretwo-party
communicationfor the actualkey distribution. A specific
form of this solutionusesa fixedtrustedthird party (TTP)
as the key server. This approachhas two problems: 1)
the TTP mustbe constantlyavailableand2) a TTP must
exist in every possiblesubsetof a group in order to sup-
port continuedoperationin theeventof network partitions.
Thefirst problemcanbeaddressedwith fault-toleranceand
replicationtechniques.The second,however, is impossi-
ble to solve in a scalableandefficient manner. We note,
however, that centralizedapproacheswork well in a one-
to-many multicastscenariosincea TTP (or a set thereof)
placedat, or very near, the sourceof communicationcan
supportcontinuedoperationwithin anarbitrarypartitionas
long asit includesthesource.(Typically, one-to-many set-
tingsonly aim to offer continuedoperationwithin a single
partition that includesthe source;whereas,many-to-many
environmentsmustoffer thesamein anarbitrarynumberof
partitions.)

Another key managementapproachinvolves dynami-
cally selecting– in somedeterministicmanner– a group
memberchargedwith the taskof generatingkeys anddis-
tributing themto othergroupmembers.This approachis
robustandmoreamenableto many-to-many typeof group
communicationsinceany partition cancontinueoperation
by electinga temporarykey server. The drawbackhereis
that,asin the TTP case,a key server mustestablishlong-
termpairwisesecurechannelswith all currentgroupmem-
bersin orderto distributegroupkeys. Consequently, each
time a new key server comesinto play, significantcosts
mustbe incurredto setup thesechannels.Anotherdisad-
vantage,againasin theTTPcase,is therelianceonasingle
entity to generategood(i.e., cryptographicallystrong,ran-
dom)keys.

In contrastto the above, contributory key management
askseachgroupmemberto contributeanequalshareto the
commongroup key (computedasa function of all mem-
bers’ contributions). This approachavoids the problems



with thesinglepointsof trustandfailure. Moreover, some
contributory methodsdo not requirethe establishmentof
pairwisesecretchannelsamonggroupmembers.However,
currentcontributory key agreement1 protocolsarenot de-
signedto toleratefailuresandgroupmembershipchanges
during execution. In particular, nested(or cascaded)fail-
ures,partitionsandothergroupeventsarenot accommo-
dated.This is not surprisingsincemostmulti-roundcryp-
tographicprotocolsdonotoffer built-in robustnesswith the
notableexceptionof protocolsfor fair exchange[1].

Themaingoalof thispaperis to demonstratehow prov-
ably secure,multi-round group key agreementprotocols
canbe combinedwith reliablegroupcommunicationser-
vices to obtain provably fault-tolerant group key agree-
mentsolutions.Moreprecisely, wepresenttwo robustcon-
tributory key agreementprotocolswhich are resilient to
any sequence(even cascaded)of eventswhile preserving
groupcommunicationsmembershipandorderingguaran-
tees. Both protocolsarebasedon CliquesGDH contribu-
tory key agreementthatgeneralizesonthetwo-partyDiffie-
Hellman[2] key exchange.Ourfirst protocolutilizesmem-
bershipinformationprovidedby thegroupcommunication
systemin orderto appropriatelyre-startCliquesGDH key
agreementin anagreed-uponmannerevery time thegroup
changes.Thesecondprotocoloptimizestheperformanceof
commoncasesat thecostof a moresophisticatedprotocol
statemachine.

The restof the paperis organizedas follows. The re-
mainderof this sectionfocuseson our motivation in pur-
suing this work and overviews related work. We then
presentSecureSpread,a securegroupcommunicationsys-
tem which utilizes our key agreementprotocols. The two
subsequentsectionspresenttwo robustkey agreementpro-
tocols. Finally, we summarizeour work anddiscusssome
futuredirections.

1.1 Motivation

As mentionedearlier, a prominentchallengeencoun-
tered in securinggroup communicationis in developing
robust, reliable and fault-tolerantgroup key management
mechanismsthatperformwell in practice.While themoti-
vationfor securityservices(key management,in particular)
in a tightly-coupledgroupcommunicationsettingis fairly
intuitive, the needfor reliable group communicationser-
vicesby the groupkey managementis lessobvious. We
claim that reliableandsequencedmessagedelivery is im-
portant(and even crucial) for cryptographicgroup proto-
cols. Asynchronousnetwork behavior mustbehandledby
theunderlyinggroupcommunicationlayer, which prompts
theneedfor ahighly reliablegroupcommunicationservice.

1Weusetheterm”agreement,” asopposedto ”distribution”, to empha-
sizethecontributory natureof thekey management.

This dependenceis both naturalandmutual. It is nat-
ural sincesecuredynamicpeergroupsalwaysrequirecer-
tain communicationguarantees.(Best-effort datagramser-
vice is not usuallya viableoption,whereas,it maysuffice
for one-to-many type groupsencounteredin Internetmul-
ticastsettings.)It is mutualsincereliablegroupcommuni-
cationsystemsareof limited utility in opennetworkswith-
out strongsecurityservicesandguarantees.Thus,we have
interdependenceamongreliablegroupcommunicationand
groupkey managementprotocols.

Cryptographicprotocol designersare primarily con-
cernedwith securityandtypically assumethatprotocolro-
bustnessis handledby the particularapplicationor by the
underlyingcommunicationlayer. Thisis reasonablein two-
partyprotocolswherecommunicationfailuresarerelatively
easyto handleandrecover from. Thepicturechangesdra-
matically in groupprotocolswherethe behavior model is
richer.

Multi-roundgroupkey managementprotocolscannotbe
expectedto run to completionwithoutbeingpossiblyinter-
ruptedby variousgroupmembershipevents: joins, leaves,
disconnects,partitions,mergesor any combinationthereof.

Ourpreviouswork [3] focusedontheperformanceeval-
uation in the scenariowith no network faultsor cascaded
eventsandprovided a good insight of the overall cost of
high securityin a groupcommunicationenvironment.The
presentwork goesinto the detailsof a completesolution
thathandleseverypossiblecombinationof groupmember-
shipevents.Thecontributionof thispaper, therefore,is the
design,andthe proof of correctnessof, a robust contribu-
tory key agreementalgorithm.

1.2 Related Work

In this sectionwe considerrelatedwork in two areas:
groupkey managementandreliablegroupcommunication.

1.2.1 Group Key Management

Cryptographic techniques for securing all types of
multicast-or group-basedprotocolsrequireall partiesto
sharea commonkey. This requiresa GroupKey Manage-
ment (GKM) protocol to provide methodsfor generating
new groupkeys andupdatingexisting keys. GKM proto-
colsgenerallyfall into two classes:


 Protocols designedfor large-scale(e.g., IP Multi-
cast)applicationswith a one-to-many communication
paradigmandrelatively weaksecurityrequirements.


 Protocols designedto support tightly-coupled dy-
namic peer groupswith modestscalability require-
ments,amany-to-many communicationparadigmand
strongsecurityrequirements.



A numberof GKM protocolssupportingabstractpeer
groupshave beendevelopedin thelastdecade[4], [5], [6],
[7], [8], [9]. All, except[9], extendthewell-known Diffie-
Hellmankey exchange[2] methodto group of � parties.
Theseprotocolsvary in degreesof protectionfrom hos-
tile attacksand in their performancecharacteristics.(For
an in-depthcomparison,see[8].) In this paper, we make
useof the CLIQUES toolkit which implements– among
othermethods– a suiteof protocols,calledgenericGroup
Diffie-Hellman(GDH). GDH offers contributory authen-
ticatedgroup key agreementand handlesdynamicmem-
bershipchanges[7, 8]. The entireprotocolsuitehasbeen
proven securewith respectto both passive and active at-
tacks.

1.2.2 Reliable Group Communication

Reliablegroupcommunicationin LAN environmentshave
a well-developedhistory beginning with ISIS [10], and
more recent systemssuch as Transis [11], Horus [12],
Totem[13], andRMP [14]. Thesesystemsexploredsev-
eraldifferentmodelsof GroupCommunicationsuchasVir-
tual Synchrony [15] andExtendedVirtual Synchrony [16].
More recentwork in this areafocuseson scaling group
membershipto wide-areanetworks[17], [18].

Researchin securinggroupcommunicationis fairly new.
Theonly actualimplementationsof groupcommunication
systemsthatfocuson security(in additionto ours),areSe-
cureRing[19] project at UCSB, and the Horus/Ensemble
work at Cornell [20]. The SecureRingsystemprotectsa
low-level ring protocolby usingcryptographictechniques
to authenticateeachtransmissionof thetokenandeachdata
messagereceived.TheEnsemblesecuritywork is thestate-
of-the-artin securereliablegroupcommunicationandad-
dressesproblemsasgroupkeys andre-keying. It alsoal-
lowsapplication-dependenttrustmodelsandoptimizescer-
tainaspectsof groupkey generationanddistributionproto-
cols. In comparisonwith our approach,Ensembleusesa
different group key structurethat is not contributory and
providesa differentsetof securityguarantees.

Recent researchon Bimodal-Multicast, Gossip-based
protocols[21] andtheSpinglasssystemhaslargelyfocused
on increasingthescalabilityandstability of reliablegroup
communicationservicesin morehostileenvironmentssuch
aswide-areaandlossynetworksby providing probabilistic
guaranteesaboutdelivery, reliability, andmembership.

2 A Secure Group Communication Environ-
ment

The work discussedin this paper has involved inte-
gratingtheSpreadwide-areagroupcommunicationsystem
with thegroupkey agreementprotocolsin theCliquesGDH

protocolsuite.In this sectionwe overview boththeSpread
andCliquestoolkits.

2.1 Spread Toolkit

Spread[22], [23] is a groupcommunicationsystemfor
wideandlocalareanetworks. It providesall theservicesof
traditional group communicationsystems,including: un-
reliable/reliabledelivery, FIFO, causal,total ordering,and
membershipserviceswith strongsemantics.

Spreadcreatesanoverlaynetwork thatcanimposeanar-
bitrarynetwork configuration(suchaspoint-to-multi-point,
tree,ring, tree-with-subgroupsor any combinationthereof)
to adaptthesystemto differentnetwork environments.The
Spreadarchitectureallowsmultipleprotocolsto beusedon
links both betweenand within sites. The Spreadtoolkit
is very useful for applicationsthat needtraditionalgroup
communicationservices(suchascausalandtotal ordering,
membershipanddelivery guarantees)but alsoneedto op-
erateoverwide-areanetworks.

Thesystemconsistsof a long-runningdaemonanda li-
brarylinkedwith theapplication.

Spreadscaleswell with the numberof groupsusedby
theapplicationwithout imposingany overheadon network
routers. Groupnamingandaddressingis not a sharedre-
source(as in IP multicast addressing)but rather a large
spaceof stringswhich is uniqueto a collaborationsession.

Thetoolkit cansupporta largenumberof differentcol-
laborationsessions,eachof whichspanstheInternetbut has
only amoderatenumberof participants.Thisis achievedby
usingunicastmessagesoverthewide-areanetwork, routing
thembetweenSpreadnodeson theoverlaynetwork.

The Spreadsystemprovides two different semantics:
ExtendedVirtual Synchrony [16, 24] andView Synchrony
[25]. In thispaper, andfor our implementationweonly use
theView Synchrony semanticsof Spread.

The Spreadtoolkit is available publicly and is being
usedby several organizationsfor both researchandprac-
tical projects.Thetoolkit supportscross-platformapplica-
tionsandhasbeenportedto severalUnix platformsaswell
asWindowsandJava environments.

2.2 Cliques Toolkit

Cliques[8, 7, 26] is a cryptographictoolkit providing
key managementservicesfor dynamicpeergroups.Cliques
includesseveralprotocolsuites:


 GDH: basedongroupextensionsof the2-partyDiffie-
Hellmankey exchange[7, 8]; providesfully contrib-
utory authenticatedkey agreement. GDH is fairly
computation-intensive requiring ��
���� cryptographic
operationsupon each key change. It is, however,
bandwidth-efficient.




 CKD: centralizedkey distribution with thekey server
dynamicallychosenfrom amongthegroupmembers.
A key server usespairwise Diffie-Hellman key ex-
changeto distributekeys. CKD is comparableto GDH
in termsof bothcomputationandbandwidthcosts.


 TGDH: tree-basedgroupDiffie-Hellman[26]; TGDH
is more efficient than the above in terms of com-
putationasmostoperationsrequire ��
���������� crypto-
graphicoperations.(Thesecurityof TGDH is slightly
weakerandit lacksseveralotherfeaturesnotgermane
in this context.)


 BD: a protocolbasedon Burmester-Desmedt[5] vari-
ation of group Diffie-Hellman. BD is computation-
efficientrequiringconstantnumberof exponentiations
uponany key change.However, communicationcosts
aresignificantwith two roundsof � -to-� broadcasts.

All Cliquesprotocolsuitesoffer key independence,perfect
forwardsecrecy andresistanceto known key attacks.(See
[27, 8] for precisedefinitionsof theseproperties.)

In this paper, we focusonly on theGDH protocolsuite
within the Cliquestoolkit. As mentionedearlier, our spe-
cific goal is to take a provably secure,multi-roundgroup
key agreementprotocol(GDH) and,by combiningit with
the reliablegroupcommunicationservice(Spread),obtain
aprovably fault-tolerant groupkey agreementsolution.

Cliques GDH API [28] is the implementationof the
GDH protocolsuite. It containsGDH cryptographicprim-
itiveswhile assumingtheexistenceof a reliablecommuni-
cationplatform for transportingprotocolmessages.GDH
assignsa specialrole to the last memberto join a group.
Thisrole,referredto asthegroupcontroller, floatsasgroup
membershipchanges.A groupcontroller is chargedwith
initiatingkey updatesfollowingmembershipchanges.2 The
following operationstrigger a key update:1) join – adda
singlenew memberto thegroup(handledasa specialcase
of merge);2) merge– addmultiple membersto thegroup;
3) leave: onemembervoluntarily leavesthegroup(handled
asa specialcaseof partition); 4) partition: multiple mem-
bersleave thegroupdueto expulsionor anetwork event.

3 System Model

In thissectionwespecifythefailureandthegroupcom-
municationmodelsusedin this paper.

3.1 Failure Model

We considera distributedsystem, a groupof processes
executingon oneor morecomputersandcoordinatingac-
tions by exchangingmessages.The messageexchangeis

2GDH API alsoallows a key refreshoperationwhich maybeinitiated
only by thecurrentcontroller.

achievedvia asynchronousmulticastandunicastmessages.
Messagescanbelost.

Thesystemis subjectto processcrashesandrecoveries.
A crashof any componentof the processsuchasthe key-
agreementlayer, theCliqueslibrary, or thegroupcommu-
nicationsystemis consideredaprocesscrash.It is assumed
thatthecrashof oneof thesecomponentsis detectedby all
theothercomponentsandis treatedasa processcrash.

Also, the systemis proneto partitionswhich may re-
sult a network beingsplit into disconnectedsubnetworks.
When sucha partition is fixed, the disconnectedcompo-
nentsmergeinto alargerconnectedcomponent.While pro-
cessesarein separatedisconnectedcomponentsthey cannot
exchangemessages.

We assumethat messagecorruption is masked by a
lower layer. Byzantinefailuresarenot considered.

Our intrudermodel takesinto accountonly outsidein-
truders,bothpassiveandactive. An outsideris anyonewho
is not a currentgroupmember. (Of course,any formerand
futuremember, is anoutsideraccordingto this definition.)
We do not considerinsiderattackssinceour threatmodel
concentrateson thesecrecy of groupkeys andtheintegrity
of the group membership(i.e., the inability to spoof au-
thenticatedmembership).Consequently, insiderattacksare
not relevantbecausea maliciousinsidercanalwaysreveal
thegroupkey and/orits own privatekey thusallowing for
fraudulentmembershipauthentication.

Passive outsiderattacksinvolve eavesdroppingwith the
aim of discovering the groupkey(s). This attacktype has
beenprovento becomputationallyinfeasiblein [7]. Active
outsiderattacksinvolve injecting, deleting, delayingand
modifying protocolmessages.Someof theseattacksaim
to causedenialof service;we do not addressthesedenial
of serviceattacks.Attackswith thegoalof impersonatinga
groupmemberarepreventedby theuseof publickey-based
signatures.(All protocolmessagesaresignedby thesender
andverifiedby all receivers.)

3.2 Group Communication Model

A group communicationsystemusually provides fun-
damentalservicessuchasmembershipaswell asdissem-
ination, reliability and orderingof messages.The mem-
bershipservicenotifies the upper-level applicationwith a
list of groupmemberseachtime the groupchanges.This
notification-of-membershipserviceis calleda view.

Several different sets of membershippropertieshave
beendefinedin the literature. Eachprovides a different
setof semanticguaranteesto theapplication,andareusu-
ally calledVirtual Synchrony semanticsor somevarianton
thename.Themany variationsof virtual synchrony areall
basedon thepropertythatprocessesmoving togetherfrom
oneview to anotherdeliver thesamesetof messagesin the



formermembershipview.
Some group communicationsystemshave beenbuilt

[12], [14], [18] that approximatethe virtual synchrony
modelalongwith somerelatedproperties.However, each
systemdoesnot provide the exact samesetof properties,
andto thebestof our knowledgea canonical“Virtual Syn-
chrony model” of anentiresystemhasnot beendefinedin
theliterature.A goodsurvey describingmany of thevaria-
tionsof differentpropertiesfor virtual synchrony semantics
canbefoundin [29].

Virtual synchrony strengthensthesharedstateof thesys-
temby deliveringmessagesin thesamemembershipasthey
weresentin. This enablesthe useof a sharedkey to en-
cryptdata,sincethereceiveris guaranteedto havethesame
membershipview asthesenderandthereforethesamekey
(ignoringfor now someconstraintson rekeying).

This work assumesthat the groupcommunicationsys-
tem supportsvirtual synchrony semanticsas they are de-
fined below. The descriptionof the propertiesis largely
basedon the survey [29] and the descriptionof the Ex-
tendedVirtual Synchrony semantics[16].

Note thatwe definethatsomeeventoccurredin view �
at process� if themostrecentview installedby process�
was � .
1. SelfInclusion

If process� installsaview � then� is amemberof � .
2. LocalMonotonicity

If process� installsa view � after installinga view ���
thenthe identifier ��� of � is greaterthanthe identifier
� ��� of ��� .

3. SendingView Delivery
A messageis deliveredin theview thatit wassentin.

4. DeliveryIntegrity
If process� deliversa message! in a view � , then
thereexistsaprocess" thatsent! in � causallybefore
� delivered! .

5. No Duplication
A messageis not senttwice. A messageis not deliv-
eredtwice to thesameprocess.

6. SelfDelivery:
If process� sendsa message! , then � delivers !
unlessit crashes.

7. TransitionalSet
1) If two processes� and " install thesameview, and
" is includedin � ’s transitionalsetfor this view then
� ’s previousview wasidenticalto " ’s previousview.
2) If two processes� and " install thesameview, and
" is includedin � ’s transitionalsetfor thisview then�
is includedin " ’s transitionalsetfor this view.

8. Virtual Synchrony
Two processesthat move together3 throughtwo con-

3If process# installsa view $ with process% in its transitionalsetand
process% installs $ aswell, then# and % aresaidto move together.

secutiveviewsdeliver thesamesetof messagesin the
former.

9. CausalDelivery
If message! causallyprecedesmessage!&� , andboth
aresentin thesameview, thenany process" thatde-
livers !'� delivers ! before!'� .

10. AgreedDelivery
1) Agreeddelivery maintainscausaldelivery guaran-
tees.
2) If agreedmessages! and !'� aredeliveredat pro-
cess� in this order, and ! and !&� are deliveredby
process" , then !&� is deliveredby " afterit delivers ! .
3) If agreedmessages! and !'� aredeliveredby pro-
cess� in view � in this order, and ! � is deliveredby
process" in � beforeatransitionalsignal,then " deliv-
ers ! . If messages! and !'� aredeliveredby process
� in view � in this order, and ! � is deliveredby pro-
cess" in � aftera transitionalsignal,then " delivers !
if ( , thesenderof ! , belongsto " ’s transitionalset.

11. SafeDelivery
1) Safedeliverymaintainsagreeddeliveryguarantees.
2) If process� deliversa safemessage! in view �
beforethe transitionalsignal,thenevery process" of
view � delivers ! unlessit crashes.If process� de-
liversasafemessage! in view � afterthetransitional
signal,thenevery process" thatbelongsto � ’s transi-
tionalsetdelivers ! afterthetransitionalsignalunless
it crashes.

4 A Basic Robust Algorithm

This sectiondiscussesthe detailsof a basicrobust key
agreementalgorithm.Throughouttheremainderof thepa-
per, we meanby thegroupcommunicationsystem(GCS),
a groupcommunicationsystemproviding the virtual syn-
chrony semantics. Our basic algorithm is basedon the
CliquesGDH IKA.2 protocol. Briefly, this protocolworks
asfollows(see[7] for acompletedescription):

When an additive group view changehappens(a join
or a merge) the currentgroup controller generatesa new
key token by refreshingits contribution to the group key
andpassesthe token to oneof the new members.When
that new memberreceivesthis token, it addsits own con-
tribution and passesthe token to the next new member4.
Eventually, the token reachesthe last new member. This
new member, who is slatedto becomethenew groupcon-
troller, broadcaststhe token to the group without adding
its contribution. Upon receiving thebroadcasttoken,each
group member(old and new) factorsout its contribution

4The new memberlist and its orderingis decidedby the underlying
group communicationsystem;Spreadin our case. The actualorder is
irrelevant to Cliques.



andunicaststheresult(calledafactor-outtoken)to thenew
controller. Thenew controllercollectsall thefactor-out to-
kens,addsits own contribution to eachof them,builds a
list of partialkeys andbroadcaststhelist to thegroup.Ev-
ery membercanthenobtainthe groupkey by factoringin
its contribution. (This is actuallyperformedwith modular
exponentiation.)

When somemembersleave the group, the group con-
troller (who,at all times,is themostrecentgroupmember)
removes their correspondingpartial keys from the list of
partialkeys,refresheseachpartialkey in thelist andbroad-
caststhelist to thegroup.Eachremainingmembercanthen
computethesharedkey.

Thealgorithmdescribedaboveis secureandcorrect.Se-
curity is preservedindependentlyof any sequenceof mem-
bershipevents,while correctnessholdsonly aslong asno
additionalgroupview changetakesplacebeforetheproto-
col terminates.

To elaborateon this claim, considerwhat happensif a
subtractive(leaveor partition)groupmembershipeventoc-
curswhile the above protocol is in progress,for example,
while thegroupcontrolleris waiting for individualunicasts
from all groupmembers.SincetheCliquesprotocolis un-
awareof the membershipchange(which is ”visible” only
to the groupcommunicationsystem),the groupcontroller
will not proceeduntil all factor-out tokens(includingthose
from former members)arecollected. Therefore,the sys-
temwill block. Similar scenariosarealsopossible,e.g.,if
oneof thenew memberscrasheswhile addingits contribu-
tion to a groupkey. In this case,thetokenwill never reach
thenew groupcontrollerandtheprotocolwill, onceagain,
simplyblock.

If thenestedeventis additive (join or merge),theproto-
col operatescorrectly. In otherwords,it runsto completion
and the nestedevent is handledserially. (We note,how-
ever, thatthis is notoptimalsince,ideally, multipleadditive
eventscanbe”chained”effectively reducingbroadcastsand
factor-out tokenimplosions.)

As the above examplesillustrate,the protocoldoesnot
functioncorrectlyin thefaceof cascadedsubtractivemem-
bershipevents.This behavior is not acceptablefor reliable
groupcommunicationsystemsthat aim to provide a high
degreeof robustnessandfault-tolerance.

A naturalandcorrectsolutionto this problemis asfol-
lows: everytimeagroupview changeoccurs,thegroupde-
terministicallychoosesamember(say, theoldest)andruns
theCliquesGDH protocolwith thechosenmemberinitial-
izing it. Notethatthisapproachcoststwice in computation
and ��
���� morein thenumberof messagesfor thecommon
casewith no cascadingmembershipevents. This will be
rectifiedin thesecondprotocoldescribedin Section 5.

When the key-agreementprotocol is integratedwith a
group communicationsystemand virtual synchrony se-
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Figure 1. Secure group communication
model

manticsmust be preserved, extra care must be taken in
order to provide all its guaranteesto the application,in-
cluding delivery of the correct views, transitionalsignal
and transitionalsets. We will elaborateon theseissues
later. Figure1 presentsthe architectureof a securegroup
communicationsystem. The systemusesthe following
types of messages:Cliques messages(final token msg,
partial token msg,key list msg, fact out msg),which are
specific to the key agreementprotocol (see[28]); mem-
bership notification messages(membmsg); transitional
signal messages(transsignal msg); applicationmessages
(datamsg);flushmechanismmessages(flush requestmsg,
flush ok msg).

To satisfy SendingView Delivery without discarding
messagesfrom live andconnectedmembers,a groupcom-
municationsystemmustblock thesendingof messagesbe-
fore the new membershipis installed. In order to imple-
mentSendingView Deliverythegroupcommunicationsys-
temsendsa message(flush requestmsg)to theclient ask-
ing for permissionto install a new membershipbeforeac-
tually creatingthe membership.The applicationresponds
with an acknowledgementmessage(flush ok msg)which
follows all the messagessentby the applicationin theold
view. After sendingtheacknowledgementmessage,theap-
plicationis notallowedto sendany messagesuntil thenew
view is delivered.In Figure1, thekey-agreementalgorithm
(KAA) interactswith both theapplicationandGCS.KAA
implementsthe blocking mechanismtransparently. When
a flush requestmsg messageis received from GCS, it is
deliveredto theuserapplication.Whentheapplicationac-
knowledgementmessageis receivedit is sentdown to GCS.

A processstartsexecutingthealgorithmby invokingthe
join primitive of the key-agreementmodulewhich trans-
lates into a group communicationjoin call. In any state
of the algorithma processcanvoluntarily leave by invok-



ing the leaveprimitiveof thekey-agreementmodulewhich
translatesit into agroupcommunicationleavecall.

Thespecificationof thealgorithmis definedin termsof
the following received eventswhich areassociatedwith a
specificgroup:


 Partial Token: a partial token message (par-
tial token msg) was received by the KAA from
theGCS.


 Final Token: a final tokenmessage(final token msg)
wasreceivedby theKAA from theGCS.


 Fact Out: a factorout message(factorout msg)was
receivedby theKAA from theGCS.


 Key List: a key list message(key list msg) was re-
ceivedby theKAA from theGCS.


 UserMessage:adataapplicationmessage(datamsg)
wasreceived by the KAA from the application. The
usercansendmessagesusingbroadcastor unicastser-
vices.


 DataMessage:adataapplicationmessage(datamsg)
wasreceivedby theKAA from theGCS.


 TransitionalSignal: a transitional signal message
(transsignalmsg)wasreceivedby theKAA from the
GCS.


 Membership: a membershipmessage(membmsg)
wasreceivedby theKAA from theGCS.


 FlushRequest: a flush request message
(flush requestmsg) was received by the KAA
from theGCS.


 SecureFlush Request: a flush request message
(flush requestmsg) was received by the application
from theKAA.


 SecureFlush Ok: a flush acknowledge message
(flush ok msg)wasreceivedby theKAA from theap-
plication.

Note that the same type of messagecan be asso-
ciated with different events, dependingon the source
of the message. For example, both FlushRequest
and SecureFlush Requestevents are associatedwith a
flush requestmsg message,but in the first casethe mes-
sageis receivedby theKAA from theapplication,while in
thesecondcasethemessageis receivedby theapplication
from theKAA.

Thealgorithmconsistsof astatemachinehaving thefol-
lowing states:


 SECURE(S): in this statethe securegroup is func-
tional, all of the members have the group key
and can communicatesecurely; the possibleevents
are Data Message,User Message,SecureFlush Ok,
FlushRequest,andTransitionalSignal;gettinga Se-
cureFlush OkwithoutreceivingaFlush Requestis il-
legal;all othereventsarenot possible.


 WAIT FOR PARTIAL TOKEN (PT): in thisstatethe
processis waiting for a partial token msg message;
the possibleeventsare Partial Token, FlushRequest
and TransitionalSignal; User Message and Se-
cureFlush Ok areillegal; all othereventsarenotpos-
sible.


 WAIT FOR FINAL TOKEN (FT): in this state the
processis waiting for a final token msg message;
the possibleevents are Final Token, FlushRequest
and TransitionalSignal; User Message and Se-
cureFlush Ok areillegal; all othereventsarenotpos-
sible.


 COLLECT FACT OUTS (FO): in this statethe pro-
cess is waiting for )+*-, fact out msg messages
(where ) is the size of the group); the only possi-
ble eventsare Fact Out, FlushRequest,and Transi-
tional Signal;UserMessageandSecureFlushOk are
illegal; all othereventsarenot possible.


 WAIT FOR KEY LIST (KL): in this state the pro-
cessis waiting for a key list msg message;the pos-
sible eventsareKey List, Flush RequestandTransi-
tional Signal;UserMessageandSecureFlushOk are
illegal; all othereventsarenot possible.


 WAIT FOR CASCADING MEMBERSHIP(CM): in
this state the processis waiting for are member-
ship and transitional signal messages(membmsg
and transsignal msg); the possibleeventsareMem-
bership,TransitionalSignal,Data Message(possible
only the first time the processgetsin this state),Par-
tial Token,Final Token,Fact Out andKey List (they
correspondto Cliquesmessagesfrom a previous in-
stanceof the key agreementprotocolwhencascaded
eventshappen);User MessageandSecureFlushOk
areillegal;all othereventsarenot possible.

For an illegal event, an error messagewill be returned
to theuser. A processhandlesaneventby performingtwo
typesof actions.Thefirst typeof actionis agroupcommu-
nicationoperationandcanbeeitheramessagedelivery, or a
messagesendsuchasunicast,broadcast,or sendflush ok.
The secondtype of actionis a key agreementspecificac-
tion. This translatesinto eithercomputationor accessto
Cliquesstateinformation

As the statemachinein Figure 2 shows, the Cliques
GDH protocolremainsintact, i.e., all of its protocolmes-
sagesaresentanddeliveredin thesameorderasspecified
in [7]. Therefore,thebasicrobustkey agreementalgorithm
providesthesamesecurityguaranteesastheCliquesGDH
protocol.

The completeproof that the algorithmpresentedabove
preservesvirtual synchrony semanticsasdescribedin Sec-
tion 3.2 aswell as the detailedpseudocodewere omitted
becauseof spaceconstraints,but they are includedin the
extendedversionof this paper[30].
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Figure 2. Basic algorithm

5 An Optimized Robust Algorithm

In this sectionwe show how thealgorithmpresentedin
the previous sectioncanbe optimized,suchthat the price
paid for handlingcommon,non-cascadedeventsis lower,
while preservingthesamesetof groupcommunicationse-
manticsandsecurityguarantees.

Thebasicalgorithmpresentedin Section4 is robusteven
when cascadedgroup eventsoccur. Every time a mem-
bershipnotificationis deliveredfrom the groupcommuni-
cationsystem,the algorithm ignoresall the previous key
agreementinformationandstartsthemergeprotocolchoos-
ing amemberfrom thenew groupto initialize it. Therefore,
this algorithm paysmore thannecessaryfor computinga
groupkey in a regularcase,becauseit doesnot distinguish
betweena membershipthat finishedwithout being inter-
ruptedanda cascadedmembership.

Thealgorithmdescribedabovecanbeoptimizedsothat
it distinguishesbetweenthesetwo cases.Every time the
groupview changes,thealgorithmdetectsthecauseof the
groupchange(join, leave,partition,mergeoracombination
of partitionandmerge)andinvokestheCliquesGDH spe-
cific protocol. For example,in the casewherea leave oc-
curred,theleaveprotocolis invoked.Computinganew key
in thecasethata leave or partitionoccurred,requiresonly
onebroadcast.Thus, leave eventscanbe handledimme-

diatelywith a lower communicationandcomputationcost
thanthebasicalgorithmrequired.

In the optimizedkey-agreementalgorithm the process
still startsexecutingthestatemachineby invoking theJoin
primitive. Also, at any moment,a processcanvoluntarily
leave thealgorithmby invoking theLeaveprimitive.

The optimized algorithm utilizes the following two
statesin additionto thoseof thebasicalgorithm:
 WAIT FOR SELF JOIN(SJ):thisis theinitial statein

whichaprocessthatjoinedagroupentersthestatema-
chine;theprocessis waiting for themembershipmes-
sagethatnotifiesthe groupaboutits joining. In case
a network eventhappensbetweenthejoin requestand
themembershipnotificationdelivery, theGCSwill re-
port thecauseof thegroupchangeasbeinga network
eventandthetransitionalsetwill containonly thejoin-
ing member. Theonly possibleeventis aMembership.
User MessageandSecureFlushOk eventsareillegal.
All othereventsarenot possible.
 WAIT FOR MEMBERSHIP(M): in thisstatethepro-
cessiswaitingfor amembershipnotification.Thepos-
sible eventsare: TransitionalSignal, Data Message
andMembership.Themembershipnotificationcanbe
causedby voluntarily eventssuchasjoin or leave, or
network events. UserMessageandSecureFlushOk
eventsareillegal. All othereventsarenot possible.
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Figure 3. Optimized algorithm

While a processstartsthe basicalgorithm in the CM
state,in the optimizedalgorithma processstartsthe algo-
rithm in stateSJ.Fromthestablestate(Sstate)if thegroup
changedtheprocessmovesto theM stateinsteadof mov-
ing to the CM stateasin the basicalgorithm. From here,
dependingon thecauseof thegroupchange,themergeor
theleaveCliquesGDH protocolsareinvoked.Also, acom-
binednetwork event which includesboth joins andleaves
simultaneouslycanbehandledby amodifiedversionof the
CliquesGDHmergeprotocol.If anothergroupchangehap-
pensbeforeakey is computed,theprocesswill moveto the
CM stateandexecutethebasicalgorithm.

A diagramshowing the statemachineof the algorithm
is presentedin Figure3. The correspondingpseudo-code
alongwith theproof thattheoptimizedalgorithmpresented
above preservesvirtual synchrony semanticsdescribedin
Section3.2is omittedfor spacereasonsbut canbefoundin
anextendedversionof this paper[30].

5.1 Handling Bundled Events

Most group eventsare homogeneousin nature: leave
(partition)or join (merge)of oneor moremembers.How-
ever, a groupcommunicationsystemcandecideto bundle
several sucheventsif they occur in closeproximity, i.e.,
within a very short time interval. The main incentive for
doing so is to reducecommunicationcostsand limit the

impactandoverheadon theapplication.
Cliques provides two separateprotocols that handle

leave andmerge events. Eachof theseprotocolscantriv-
ially handle bundled events of the sametype, i.e., the
Cliquesmergeprotocolcanaccommodateany combination
of bundledmergesand the Cliquesleave protocolcando
the samefor any combinationof leavesandpartitions. A
more interestingscenariooccurswhen a single member-
shipeventbundlesmerges/joinswith leaves/partitions.One
obvious way to handlethis type of event is to first invoke
Cliquesleave to processall leaves/partitionsand then in-
vokeCliquesmergeto processjoins/merges.However, this
is inefficientsincethegroupwouldessentiallyperformtwo
separatekey agreementprotocolswhereonly one is truly
needed.We cantake advantageof the fact that both pro-
tocolsin Cliquesareinitiatedby thegroupcontroller. Af-
terprocessingall leaves/partitions,thegroupcontrollercan
suppressthe usualbroadcastof new partial keys and, in-
stead,forwardthe resultingsetto thefirst merging/joining
membertherebyinitiating a mergeprotocol. This savesan
extra roundof broadcastandat leastonecryptographicop-
erationfor eachmember.

6 Conclusions

This work provides two robust key agreementalgo-
rithms. We prove that by integrating them with a group



communicationsystemssupportingVirtual Synchrony, the
groupcommunicationmembershipandorderingguarantees
arepreserved.

We intend to explore and experimentwith robustness
andrecovery techniquesfor a spectrumof othergroupkey
managementmechanisms,suchasthecentralizedapproach
andtheBurmester-Desmedtprotocol.

Finally, several necessaryservicesfor a securegroup
communicationcould lead to interesting future work.
They includeservicessuchasgroupmembercertification,
intra-groupauthentication,privatecommunicationwithin a
group and private communicationbetweenmembersand
non-membersof thegroup.
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