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Abstract. Blockchain protocols’ primary security goal is consensus: one
version of the global ledger that everyone in the network agrees on. Their
proofs of security depend on assumptions on how well their peer-to-peer
(P2P) overlay networks operate. Yet, surprisingly, little is understood
about what factors influence the P2P network properties. In this work,
we extensively study the Ethereum P2P network’s connectivity and its
block propagation mechanism. We gather data on the Ethereum network
by running the official Ethereum client, geth, modified to run as a “su-
per peer” with many neighbors. We run this client in North America
for over seven months, as well as shorter runs with multiple vantages
around the world. Our results expose an incredible amount of churn,
and a surprisingly small number of peers who are actually useful (that
is, who propagate new blocks). We also find that a node’s location has
a significant impact on when it hears about blocks, and that the precise
behavior of this has changed over time (e.g., nodes in the US have be-
come less likely to hear about new blocks first). Finally, we find prune
blocks propagate faster than uncles.

1 Introduction

Ethereum [34] is a cryptocurrency that can also store and execute user-generated
programs often called smart contracts. Compared to Bitcoin [32], Ethereum is
significantly more expressive and can be used to implement decentralized voting
protocols, financial contracts, and crowdfunding programs. Today, Ethereum is
the second-most-valuable cryptocurrency behind Bitcoin, with a market capital-
ization of over $26B [6].

Given its complexity, it may be unsurprising that Ethereum has a number
of differences from Bitcoin. For the purposes of this paper, two such differences
stand out: First, Ethereum is based on a general purpose peer-to-peer (P2P)
overlay responsible for discovering other nodes and maintaining connectivity.
This P2P layer can be used by higher-level protocols other than Ethereum (in

?? We thank the anonymous reviewers and Arthur Gervais for their helpful comments.
This research was supported in part by NSF grants CNS-1816802 and CNS-1900879,
a Ripple unrestricted gift, and Facebook Fellowship. We also thank the Ethereum
Foundation for a gift of AWS credit used toward the collection of our data.



2 L. Kiffer et al.

fact, we find this is often the case). The Ethereum Network layer sits between
the P2P layer and the overlying application layer (the blockchain itself), and is
responsible for choosing peers, disseminating new blocks, and reaching network-
wide confirmation of transactions. Second, Ethereum’s 15 seconds (on average)
block interval is dramatically shorter than Bitcoin’s 10 minutes (on average).
This significantly reduced target block mining interval opens the door to much
faster “network confirmation” of accepted transactions.

Thus, the structure of the Ethereum P2P overlay, including aspects such as
peer connectivity and block propagation delay, play an important role in achiev-
ing the target performance and correct functioning. Most prior measurement
work on Ethereum has focused either primarily on the P2P layer [15, 28] or pri-
marily on the application layer (i.e., the blockchain itself [27, 26, 8, 9, 33]), leaving
the Ethereum network layer not as well understood.

In this paper, we aim to better understand the network structure of
Ethereum, focusing on both how the Ethereum network is formed and evolves
over time, as well as how the network is used to propagate new blocks, a crucial
part of the consensus mechanism. We do this by integrating information from
the P2P layer (e.g., which nodes are available, who nodes choose to connect
to), information from the application layer (e.g., which blocks are ultimately
accepted), along with information from the Ethereum layer (e.g., which peers
nodes exchange block information with, and which peers actually provide the
most useful information).

We conduct our study by running a customized version of Ethereum’s official
Go client, geth, for over seven months, allowing us to observe the evolution of
the Ethereum network through multiple protocol changes. We also run multiple
nodes in a variety of vantage points across the globe for shorter lengths during
this time period, allowing us to study both how our peers interact and how the
location in the physical Internet affects the peers’ experience in the Ethereum
network. The results of our analysis can be summarized as follows:

• Extensive peer churn: We observe dramatic levels of churn in the Ethereum
network, both in terms of the number of unique peers and connection lengths.
Churn can run the risk of disconnecting a network or making it difficult to
quickly propagate information throughout it, and challenging to estimate the
size of the network. We investigate churn in the Ethereum network and find
that 68% of the peer IDs we see in our 200-day scraping period are present
only on a single day, and 90% of them are present on fewer than 25 days.

• Miner centralization: The top 15 miners are responsible for over 90% of
mined blocks. We investigate those miners and find that all but one are well-
known mining pools. We also note a difference in the efficiency of miners: the
top 3 mining pools have a much greater probability of a block they mine being
included in the blockchain (propagating faster and “winning” the block race).

• Most announcers are long-lived: Comparing all peers to those who are
first to announce a block, we see that those announcing blocks tend to have
longer connections, larger average and total connection lengths, and are online
more days. Almost 70% of peers are seen only one day, but about 40% of our
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announcing peers are seen only one day. The latter is still a large percent but
there is a set churn in peers who are not participating in block propagation.

• Announcers are diverse: Focusing on which peers tell our nodes about
new blocks first, we find that a large number of peers are responsible for
announcing a miner’s block first to our node. No one peer announces more
than 6% of a miner’s blocks to us first.

• Quick network-wide propagation: The speed at which new information
spreads throughout the Ethereum network is critical in how quickly transac-
tions can complete. We perform a novel analysis of network propagation times
by running nodes in three different vantage points (USA, South Korea, and
Germany). Despite the diversity of information sources across the three, we
find that the difference in time from when the first learns about a block until
when the last learns about it is very small: for instance, less than 100 ms for
85% of all new blocks.

• Location bias: Although our vantage points in North America, Asia, and
Europe did not experience any unfair disadvantages, we observed bias using
additional vantages in locations with fewer peers (South America and Ocea-
nia). We observe an significant disparity in which locations hear about blocks
first, with those two locations being first to hear about blocks only ∼3% of
the time.

2 Background

The Ethereum system consists of multiple layers. In this section, we provide an
overview of the components we study in this paper, and detail related work.

2.1 Overview

The purpose of Ethereum is to create a blockchain via proof-of-work mining. Un-
like systems that function almost exclusively as a currency, Ethereum is made
up of transactions that contain either (a) direct transfers of ETHER (the currency
unit of Ethereum) or (b) transactions that create or call smart contracts. Trans-
actions of the second type must also pay to run the computation via GAS in
extra ETHER sent with the transaction. While much work has examined smart
contracts (e.g., [27, 9, 33]), we are focused on the Ethereum network itself.

Miners are participants in the Ethereum network that listen on the network for
transactions and package them into blocks. To successfully create a block, a miner
must verify that all transactions included are valid (including code execution and
signatures), include the hash from the most recent block in the miner’s chain as
well as a Proof-of-Work (proof enough computational “work” was done to create
this block). Miners do this “work” by creating blocks whose hash3 has a minimum
specified number of leading zeros. The target number of leading zeros is known
as the difficulty and is adjusted at every block so that a block will be generated
roughly every 15 seconds. The miner whose block becomes part of the chain is
3 The Ethereum protocol uses their own memory-hard hash function, Ethhash [1].
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rewarded with 5 ETHER and the GAS of the transactions. Because of the high
variance in winning a block, miners often come together to form mining pools
where block rewards are split among the participants. We observe in (Figure 1)
that the the top 15 miners (14 of which are known mining pools) mined over
90% of all blocks.

Mainchain, Uncles, and Prunes are different types of blocks in Ethereum.
Blocks that are part of the blockchain containing the history of Ethereum are
called mainchain blocks. However, not all valid blocks share this fate. With a
target time between blocks of 15 seconds, it often happens that two or more
valid blocks are mined within a short interval of each other by two different
miners, contending for the same position in the chain. Both blocks propagate
through the network and eventually consensus is reached on which of the two
blocks become part of the mainchain.

To still reward mining related to these discarded blocks, miners can also
choose to include these valid, but non-mainchain blocks as uncles in the blocks
they mine. A miner includes the hash of the discarded block in a special field of
the block only if the parent of the uncle (the block the uncle points to) is a
block in their own chain up to six blocks prior. Both the miner and the miner of
the uncle receive an additional, smaller amount of ETHER.

Finally, some valid blocks may be mined, but never end up in the mainchain
or become uncles (e.g. if the announcement of the block is significantly delayed),
we refer to such blocks as prunes. Note that because prunes are not on the
blockchain at all, we can only observe them by participating in the network and
hearing them being announced. On average, we observe roughly 6,000 mainchain
blocks, 400 uncle blocks, and 10 prune blocks each day.

2.2 Networking in Ethereum

The Ethereum system is made up of three layers: the application layer that
contains the blockchain, the Ethereum layer that contains peers exchanging in-
formation about blocks and transactions, and the peer-to-peer (P2P) layer that
allows nodes to find others and establish connections (more details are in Ap-
pendix A). We briefly overview these below based on the official documenta-
tion [4, 5, 2], talks [20], and the official client code.

P2P layer The P2P layer is divided into two components: a discovery protocol
that allows nodes to find each other, and DevP2P that nodes use to communicate.
We detail the Discovery protocol in Appendix A.

The DevP2P protocol runs in parallel to the Discovery protocol and is re-
sponsible for establishing sessions with other nodes, sending and receiving mes-
sages between peers and managing the actual higher-level protocol being run.
In Ethereum, DevP2P uses RLPx, which is responsible for encrypting, encod-
ing and transferring messages between peers. Once a peer has been discovered
during the execution of the Discovery protocol, the RLPx protocol initiates the
TCP handshake and HELLO messages are exchanged. In the HELLO message,
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both sides send the protocol version, the client software type, the capabilities
and version they support, the port they are listening on and their ENODEID.

Importantly, the DevP2P protocol checks if the remote node is running the
same application-layer protocol (e.g. eth for the Ethereum Wire Protocol), that
they support each others’ protocol version, and that they agree on the blockchain
(i.e., the genesis blocks and any forks). The nodes will disconnect if any of these
conditions do not hold, which is surprisingly common: prior work [28] found that
over two months in 2018, about 95% of nodes were running the eth protocol,
but only 54.5% of those agreed on the blockchain. Otherwise, if the conditions
hold, the nodes become peers and can exchange messages at the Ethereum layer
(we distinguish nodes at the P2P layer from peers at the Ethereum layer).

Ethereum layer The EthereumWire Protocol [2] is the application-layer proto-
col for propagating transactions and blocks, and for requesting block and state
data so new clients can sync to the existing state. To be brief, we omit how
new clients sync to the blockchain and instead focus on how new messages are
propagated.

Transactions are transmitted in full via a TransactionMsg message either by
the originator of the transaction or when a node hears about a new transaction.

Blocks are transmitted in a more complicated fashion. When a node hears
about a new block, they first verify that the block belongs to their chain and
includes the PoW. At this point, the node propagates the full block by sending a
NewBlockMsg message to a subset of their peers.4 The node then fully validates
the whole block by adding it to their internal state. The node finally sends the
hash of the block to its remaining peers who have not heard about the block
via a NewBlockHashesMsg message. An overview of this process is provided in
Algorithms 1-4 in Appendix B.

2.3 Ethereum implementations

There are several versions of the Ethereum client, the most common are the
official Golang implementation called geth and a popular, non-official Rust-
based client, Parity. We deploy our measurements using the official geth client,
run by a vast majority of the network [28, 7]. By default, the geth client used
to have the maxPeer, a cap of the number of peers the client will maintain,
constant set to 50. This cap is enforced by bounding 66% of its maxPeer as
incoming connections and the remaining connections as outbound. In order to
gain visibility into the network, we increased the maxPeer cap to 750 during
most of our experiments. The geth client will keep on accepting and making
connections until its peer cap is met, including looking for additional nodes to
connect to via the node discovery protocol.

4 In geth this subset is composed of a square root of their peers who have not heard
about the block.



6 L. Kiffer et al.

2.4 Related work

The papers that most closely relate to our work are [15] and [28]. In [15], Gencer
et al. run a measurement-based comparative study of the Bitcoin and Ethereum
P2P networks with a focus on decentralization properties. For Ethereum they
look at peer bandwidth, connection latency (to peers and bounds between
nodes), and some amount of efficiency of miners through miner distribution
of blocks and uncle counts. In [28], Kim et al. scrape the Ethereum P2P network
by connecting to peers just long enough to establish a full DevP2P connection
and checking up to the DAO fork (i.e. not a ETC node). They focus their analy-
sis primarily on node client type, “freshness”, location/ASes and also connection
latency. These two papers ran scrapers collecting quick peer information while
we run a long-term full node which is able to collect more temporal node infor-
mation (i.e. analyze churn in more detail), and connect peer information with
the kinds of block data they send us (i.e. block propagation, some miner analy-
sis), as well as capture prune blocks which has yet to be observed in Ethereum.
We can also distinguish exactly the peers who fully participate in the Ethereum
protocol as those who send useful block information, i.e. propagate blocks.

We use ethernodes.org to compare the nodes we see and note that there has
been work showing how ethernodes.org data is not representative, e.g. many of
the peers it reports are not actually running the mainnet Ethereum protocol
[28, 3]. They also briefly mention churn, but in no detail. We explore churn in
greater detail both in the ethernodes.org data and in our own peer data.

In another Ethereum network measurement study [14], Gao et al. scrape the
P2P layer for peers who they make TCP connections with, though similarly to
ethernodes.org, a TCP connection does not distinguish mainnet nodes. They
enumerate peer tables for those nodes and analyze their topological properties,
though peer tables do not represent actual peer connections on the network.
Other measurement works in this area include Decker et al. [11], who measure
the block propagation delay and fork-rate of Bitcoin5, work studying peer churn
in Bitcoin and other non-blockchain P2P networks [25, 12, 30], and many works
analyzing data extract-able from the blockchain [27, 26, 8, 9, 33].

3 Methodology

We now detail our data collection methodology, how we processed the resulting
data set, and provide a high-level overview of the data we collected.

3.1 Ethereum client

We created an instrumented and customized version of the geth client [18] that
was designed to log detailed information about its network- and application-
layer activity. At the P2P layer, our client logs all attempted connections (both
inbound and outbound, called handshakes) along with remote node information
5 find a median and mean delay of 6.5 and 12.6 seconds (from 2013)
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including the remote node’s ENODEID, IP address, and announced software ver-
sion. Our client also logs all PING and PONG messages that Ethereum periodically
sends as “heartbeats” between nodes (measuring network latency).

At the Ethereum layer, our client logs a number of messages that are
exchanged between peers, primarily focused on messages concerning blocks
(NewBlockMsg and NewBlockHashesMsg). For each message, our client logs a
timestamp and the identity of the remote peer.

To limit any negative impact on the network, our client largely participates
in the network in the same manner as a regular full node (e.g., finding peers,
exchanging information, etc). There are two primary modifications we make to
enable us to understand the Ethereum network: First, we modify our client to
suppress announcing and forwarding one-third of blocks and transactions (blocks
whose hash value is a multiple of three). We do so in order to study how those
messages are propagated without our client affecting their dissemination; our
client forwards the other two-thirds of blocks and transactions as normal.6 Sec-
ond, we modify our client to allow a much higher peer cap (the limit on the
number of network-layer peers the client will connect to). We do so in order to
study the behavior of many remote peers at once and, as Gencer et al. showed
in Bitcoin [17], the more connections we maintain, the earlier we receive block
information, meaning we are likely closer to their sources.

3.2 Data collection

We conducted three runs of data collection with different numbers and locations
of our clients. We describe these below. In all cases, we use AmazonWeb Services’
EC2 to host our client, using a r5.2xlarge machine time to ensure the hardware
had sufficient capacity. We configured the host operating system to sync with
timeservers via the Network Time Protocol service continually to adjust for clock
drift. Unless otherwise noted, we set the peer cap in our client to 750 peers (we
demonstrate below that we likely connected to the vast majority of other nodes).

We found that the geth client (v1.9.0) appeared to have some memory leaks
(that were exacerbated by our modification of the peer cap to a much larger level
than normal). As a result, our clients would sometimes crash and be immediately
restarted. We found that our client would often take a few hours to build up its
peer count (e.g., see Figure 5), so for our analysis, we ignore any data from before
the client reported at least 400 peers.

Peer Cap Experiment Our choice of a maximum of 750 peers for our long-
running measurements was because of a memory leak in the geth client. In
order to establish whether our choice of 750 peer cap is representative of the
network, we ran three clients in parallel in the us-east-1 Amazon data center
(in Virginia, U.S.) with increasing peer limits with peer caps of 500, 1000 and
1,500 peers respectively. We explore this experiment in detail in Appendix C,

6 We are unable to avoid forwarding information on all blocks/transactions, as doing
so would cause other peers to decide to stop peering with our client.
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Peer counts Block counts
runs location udp p2p peer useful first main uncle prune

longitudinal U.S. ID 1,301,568 194,608 90,265 24,945 12,593
May-Dec U.S. IP 339,832 138,107 55,091 22,982 9,359 1,179,883 79,938 2,695

vantage
U.S. 119,892 20,339 8,932 2,822 1,331
Seoul 106,397 23,059 9,876 4,865 1,459

June 6-10, Frank. 107,559 24,744 10,876 4,695 1,138
14-16, 2019 All 150,961 31,188 15,644 6,526 2,465 39,345 2,977 113

information
U.S. 299,971 21,257 9,234 5,055 1,214
Seoul 295,480 21,024 8,631 5,175 1,822

propagation Frank. 289,902 20,708 8,276 5,071 1,349
May 12- São P. 290,390 22,112 9,440 5,337 2,152
23, 2020 Sydney 307,173 23,225 9,643 5,556 1,559

All 480,355 30,896 14,613 6,913 3,867 69,199 4779 153

Table 1: Peer and block counts for the longitudinal experiment, multiple vantage
point experiment and information propagation experiment. For the longitudinal exper-
iment we look at unique ENODEID and IP, while for the rest we look at ENODEID. We
note that useful refers to any peer who announces blocks to us while first refers to
peers to who are the first to announce a mainchain block to us.

and the results suggest that the reachable peers we can connect to at any given
time caps at about 1,000 peers.

Longitudinal experiment Our primary data collection experiment was a long-
term longitudinal study of how the Ethereum network behaved over a period of
many months. We refer to this experiment as the longitudinal experiment, and it
consisted of a single client running in the Virginia Amazon data center between
May 15th, 2019 and December 13th, 2019.

Multiple vantage point experiment For a shorter period of time, we also
ran a client in the ap-northeast-2 Amazon data center (Seoul, South Korea) as
well as a client in the eu-central-1 Amazon data center (Frankfurt, Germany),
alongside our Virginia, U.S. client. We refer to this experiment as the multiple
vantage point experiment, and was run in 2019 between June 6th and June 10th
and then again between June 14th and June 16th.

For this experiment, we only consider times where all three nodes were up
(with a sufficient peer list, as described above). In total, this experiment resulted
in 6 days and 4 hours of logged messages.

Information propagation experiment In our multiple vantage point experi-
ment, we observed that our three chosen vantage points tended to be physically
close to where most of the blocks were first being announced from(Table 3)
and where the majority of our peers are located(Table 2). We finally ran one
additional experiment with our three locations in the multiple vantage point ex-
periment, as well as a node in the sa-east-1 Amazon data center (São Paulo,
Brazil) and the ap-southeast-2 Amazon data center (Sydney, Australia). We
chose these two additional locations as they appeared to be locations where very
few (<1%) of blocks are being first announced from, and including them would
allow us to better understand how network location affects when information in
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the Ethereum network is received. We ran this experiment between May 12th
and 23rd, 2020, and we refer to it as the information propagation experiment.

Limitations We note that since these are all EC2 instances, running copies of
the same machine in different Amazon locations allowed us to maintain location
as our only variable (so hardware differences would not affect our results) as
well as have the storage and memory capabilities needed. A clear limitation is
whether Amazon machines have a biased view of the network, including special
links between their centers we cannot control for. We note that a quarter of all
peers we connect to in the longitudinal experiment are running on EC2 instances,
the largest fraction from a single provider. We also weighted this choice with the
additional variable of using multiple cloud providers or VPNs which would have
added artificial latencies to our connections.

Ethernodes Ethernodes [7] is a public web site that reports on aggregate statis-
tics for the Ethereum network and is widely cited when reporting statistics about
the Ethereum network, including in academic work [16, 19, 13, 24, 23]. Between
March 30 and October 15th, 2019, we scraped Ethernodes for the Ethereum
node information they report from their crawler. In Appendix E we use the
Ethernodes data as a point of comparison for our data analysis.

4 Analysis

We organize the analysis section by working our way down the different layers
involved in the Ethereum protocol. We are interested both in understanding
general trends in the network and narrowing in on specifics related to peer be-
havior. Unless otherwise specified, the bulk of the analysis refers to data from
the longitudinal experiment.

We start with the Application layer, i.e. who is mining blocks. Our main
questions are: How is mining distributed among the top miners, and are the
top pools equally efficient? In other words, do some miners appear to have an
advantage (e.g., are less likely to mine non-mainchain blocks)?

Next, we move on to the Ethereum layer by examining the timestamps of
when we hear about different types of blocks. Here we are interested in answering:
How are blocks being propagated in Ethereum and is block propagation correlated
to the type of block, block size, or other factors?

We then examine the P2P layer, where we focus on who our nodes connect
to/come across. The bulk of the novelty in our work comes from tying peer
connectivity behavior with its usefulness in block propagation. This is done in
the following two layers both in breaking down the behavior of our peers in the
longitudinal experiment and comparing information received from peers from
different vantages. We ask: What trends can we observe in peer connectivity
behavior? How many of the peers that we come across end up being useful?

Finally, we end our analysis by looking at the underlying network and how
the position of our nodes in the Internet affects their view of the network. For
this we utilize both the multiple vantage point experiment and the information
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propagation experiment to answer: Are there advantageous geographic locations
from which to run an Ethereum peer and, if so, how large is the disparity between
locations?

4.1 Application Layer

We begin by examining who is mining blocks by looking at the self-advertised
miner id in the blocks our client hears about. We take data from the seven
months of the longitudinal experiment, and group blocks by whether they are
part of the mainchain, uncles, or prunes.

Figure 1 plots the cumulative distribution of the blocks of different types
across miners (note the log scale on the x-axis). We can immediately observe
that the fraction of blocks mined is not uniform, and in fact highly skewed
towards a very small number of miners. While 90% of all blocks are mined by
less than 5 % of miners (and the top three miners mine over half of the blocks),
over half of the miners mine just a single block. Unsurprisingly, when we examine
when these blocks are mined, the few miners who mine the majority of the blocks
are active for the length of the measurement period, while others who win less
frequently come and go more often.

We note that the low number of miner ids is not entirely surprising, as
miners often group into mining pools and all mine for the same miner id. As
a result, much of the discrepancy between how many blocks miners win can be
explained by dramatic differences in aggregate mining power across pools.

To further explore the discrepancy across miners, we examine each miner’s
uncle to mainchain and uncle to prune ratios in Figure 1. Recall that uncles
and prunes occur when multiple blocks are mined at once, and eventually one
wins. Similar to the analysis of Gencer et al. [15], we say if mining was “fair”,
we would expect that all miners would typically mine a similar fraction of
uncles and prunes (relative to all blocks they mine)7. However, we see that
7 Gencer et al. [15] compared Bitcoin prunes to all blocks mined, but for Ethereum
just used uncle counts. They found that at the time Bitcoin had a larger standard
deviation in mining fairness than Ethereum.
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Fig. 1: Left: Cumulative distribution of the number of all blocks won by top miners.
Note the log scale on the x-axis. Right: The fraction of total mainchain, uncle, and
prune blocks each miner mines. We see the top 3 miners mine disproportionately more
of the mainchain blocks than uncles or prunes and thus have a disproportionate
advantage over the other miners.
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the top mainchain miners tend to have many fewer uncle and prune blocks
than mainchain blocks, but that this trend fades as we start to look towards
less-powerful miners. This suggests that larger miners appear to have some sort
of advantage in the network, as they suffer from uncles and prunes at a much
lower rate. Given a block race, having larger mining power increases a miner’s
odds of winning (as they are more likely to win the next block), and network ad-
vantages (lower delays) would further increase their odds. It is unclear at which
point the former plays a bigger role.

Next, we examine the behavior of the Ethereum protocol layer to better
understand how blocks are propagated in the network.

4.2 Ethereum Protocol Layer

We now explore general block trends and how blocks get propa-
gated in the network. In Figure 2, we examine how our client first
hears about blocks (NewBlockMsg or NewBlockHashesMsg) over time.
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Fig. 2: Count of new blocks by type and
by which message we first heard about the
new block (NewBlock or NewBlockHash).

It is clear that new mainchain blocks
and uncles are primarily announced
to our node first as the full block
message, though there are times when
some blocks get to it first as hashes.
This corresponds to our peers first
propagating the full block and then
the hashes.8 Starting in late October,
we see the mainchain count starts de-
creasing. This was due to the upcom-
ing difficulty bomb which causes the
difficulty to gradually increase, speed-
ing up as the deadline approaches;
this in turn caused blocks to be mined
more slowly.9

We next dig deeper into the NewBlockMsg messages to better understand
block propagation. Specifically, we look at the incoming NewBlockMsg messages
for each block, and measure the difference between the first time our client hears
about a given block and all subsequent times. Figure 3 presents the cumulative
distribution of times for different percentiles for each block, broken down by
whether or not it was a block that our client propagated (recall we only propagate
2/3 of blocks at random). We can observe that when we propagate blocks, the
lower percentiles tend to be longer (compared to when we do not). This may
be surprising, but is likely due to the fact that other nodes will not inform our
client if it knows we already know about a block; by propagating a block, we

8 When prunes are first announced to us via a NewBlockHashesMsg, it generally cor-
respond to times we hear about odd blocks that do not follow the mainchain (i.e.
the block number is much smaller or larger than the current height).

9 The bomb was delayed with the Muir Glacier hardfork in early January 2020
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effectively preclude being told. When we propagate a mainchain block we receive
fewer announcements for it, which is not true for prunes or uncles.

We further explore the propagation time for different block types in Figure 3,
and note the propagation delay peaks at around 200 ms for all types of blocks.
However, prunes and uncles have a much longer tail, implying their dissem-
ination through the Ethereum network is significantly slower than mainchain
blocks. We explore whether a block’s delay is correlated with any factors about
the block. Specifically, we look at the relationship between the median delay of
mainchain blocks and their GAS count and find a very weak correlation coeffi-
cient of 0.035. Similarly, we see a similar weak correlation coefficient of 0.031
block size and median delay.

Finally, when we examine the number of announcements we receive per block,
we notice that we receive between 100 and 300 announcements for most blocks
except for prunes. The prune data is largely skewed by few peers (e.g., 70% of
prunes are only announced to our client by one peer), and these peers tend to
advertise many block hashes with either very low or very high block numbers
far from the correct mainchain. We note that for these prunes that are both
announced primarily as NewBlockHashes (i.e., we do not receive the full block)
and in large batches with block numbers that do not correspond to the current
height of the mainchain, we do not consider them true prunes of the mainchain
and exclude them from the propagation delay analysis of Figure 3.

4.3 Peer-to-Peer Level

We now turn to examine the P2P protocol layer by looking at trends in our
connections to nodes. In Figure 4 (left), we plot the number of unique nodes our
client PING/PONGs, starts a TCP handshake, and fully connects to (i.e. peers)
in each hour and day. In total in the longitudinal experiment, our machine
PING/PONGs 1,301,568, starts a TCP connection with 194,608, and fully con-
nects with 90,265 unique ENODEIDs. We see the fluctuation of our client’s peer
count in Figure 4(right), where we plot the peer count over time for different
runs. We can see the peer count rise steadily during the beginning of a measure-
ment and then fluctuate, often dropping by half before picking up again. We see
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Fig. 3: Left: The difference in time for when our longitudinal experiment client hears
about a block from the first announcement to all subsequent announcements by per-
centile. Right: Probability distribution of the time of subsequent announcements since
our client first heard about that block from any peer.
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this significant churn in our full connections in Figure 5,(left): we compare the
average number of peers we have to the number of new connections and connec-
tions that end each hour, and see that within an hour we might make up to 3x
the number of connections as our average connections. This means each hour,
our client makes/ends around 1K-1.5K connections to 300-400 unique ENODEIDs,
i.e. reconnecting to the same nodes.

We further explore the trend of re-connecting to the same nodes in Fig-
ure 5,(right), where we plot a breakdown of the length of connections for con-
nected peers based on how long we are connected (short is 0–10 seconds, medium
is 10–1,000 seconds, long is 1,000 seconds or more). We can observe that while
over 80% of unique peers we connect with in an hour are long connections (>
1000s), we do see around 10% of connections to both short and medium peers.

Peers who participate in block propagation Given this high level of churn,
looking at all connections would be significantly biased by the many short con-
nections. Thus, we focus more narrowly on the peers who actually affect infor-
mation propagation in the Ethereum network: those peers who propagate blocks
to our client, called useful peers.

We plot the count of useful peers in Figure 6 , plotting the number of peers
who inform our client of different types of blocks each hour over the course of the
run. We can observe around 400 unique peers per hour (and around 1,000–2,000
unique peers per day, not shown) who announce relevant blocks.

We dig deeper into the behavior of different peers by comparing the connec-
tion lengths of three groups of peers: all peers, useful peers, and first announcers
(those peers who are the first to announce a block to us mined by the top 15 min-
ers). In Figure 6 we compare connection lengths and number of days we observe
these peers. We see a clear distinction between all peers and those announcing
blocks to us, where the latter tends to have longer connections and show up more
days. There is an increase around 1,000 seconds for average peer online times
which correspond to many ENODEIDs coming from a few IPs (making up about
30% of the announcing ENODEIDs) who are online only once for about 1,000 sec-
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onds10. Finally, the “spike” at 15 seconds in all connection lengths comes from
over 5,000 ENODEIDs mostly from a single IP in China which reconnects many
times; it disappears when we normalize by IP in the middle graph.

Peer location Next we examine the physical location of peers by using the
geolite2 and ip2geotools tools to map IP addresses to continents. In Table 2,
we take a closer look at where the peers our client connects to are located. We list
all P2P nodes we connect to, all Ethereum peers and all useful peers across the
entire run. To observe a snapshot as well, we also include the useful peers from
a single 24-hour snapshot in 2019 and another in 2020. Generally the majority
of our peers are in Asia, Europe and North America, with useful peers skewing
more towards North America and P2P peers coming primarily from Asia.

Fraction of peers in locations
Data set Africa Asia Europe N.Amer Oceania S.Amer Unkn Count

P2P 0.0060 0.472 0.232 0.255 0.0148 0.0144 0.004 138,107
Ethereum 0.0057 0.348 0.283 0.329 0.0173 0.0108 0.006 55,091
useful 0.0014 0.315 0.262 0.398 0.0139 0.0049 0.004 22,982

2019-useful-24 hr 0.0010 0.289 0.286 0.409 0.0093 0.0046 0.0009 1,079
2020-useful-24 hr 0.0037 0.273 0.249 0.459 0.0129 0.0025 0.0006 1,632

Table 2: Fraction of peers (by unique IP address) across continents for all P2P connec-
tions, all Ethereum peer connections, and all useful peers across the entire longitudinal
experiment. Also included are the useful peers from two 24 hour periods 1 year apart
(05/20/2019 and 05/20/2020).

4.4 Internet location

Finally, we explore the effect of the network geographical position on how peer
connections are made and how blocks are propagated. We discuss the highlights
of our findings in Table 3. We first look at the location of the peer who told
10 Mostly Coinbase nodes who appear to be routinely generating a fresh ENODEID.
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our longitudinal experiment client about each block first. We see that our client
primarily first heard blocks from peers in North America, with Europe and Asia
closely following. However, it is unclear the extent to which this is due to the fact
that our client in the longitudinal experiment was located in North America.

To explore this, we turn to examine the multiple vantage point experi-
ment run, where we also run clients in parallel in Seoul and Frankfurt. We
look at the fraction of where the first announcement for all blocks are received
from by continent, and also filter for just the blocks that machine was the first
to hear about (i.e. before the other two locations)

We can immediately observe that all three of our clients primarily hear about
new blocks from peers on the same continent where they are located, and this
effect is particularly strong when they are the first to hear about a block: our
U.S. client hears about new blocks for the first time from a North America peer
81% of the time; our Seoul client hears about blocks first from an Asia peer 90%
of the time; and our Frankfurt nodes hears about blocks first from a Europe peer
90% of the time. Additionally in 10 in Appendix D we see some evidence that
the location of our machine effects the duration of it’s connection to peers.

To determine which of our three nodes heard about blocks first overall we
ensure all of our clients are synced to local timeservers using NTP. All three
clients “win” roughly one-third of the time.

The results thus far suggest that the majority of peers are located in North
America, Europe, and Asia (this observation is consistent with the peer infor-
mation posted on ethernodes.org as well) and that may also be where mining
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Peer Location
Runs Node AF AS EU NA OC SA total fraction

longitudinal Virginia 2e-5 0.099 0.158 0.742 9e-4 5e-5 393,276
A

ll
B

lo
ck

s

multiple
vantage

Virginia 0 0.0679 0.205 0.727 0.000432 5e-5 39,345
Seoul 0 0.632 0.101 0.264 4e-3 3e-5 39,345

Frankfurt 0 0.0523 0.849 0.0989 3e-5 0 39,345

info
prop

Virginia 4e-5 0.0469 0.118 0.834 2e-4 0 69,199
Seoul 3e-4 0.766 0.048 0.182 0.0038 4e-5 69,199

Frankfurt 1e-4 0.103 0.788 0.109 6e-5 3e-5 69,199
São Paulo 2e-4 0.153 0.364 0.481 0.001 4e-4 69,199
Sydney 9e-5 0.550 0.1006 0.346 0.0045 7e-5 69,199

F
ir

st
to

H
ea

r multiple
vantage

Virginia 0 0.0485 0.143 0.808 2e-4 2e-4 12,244 0.311
Seoul 0 0.897 0.00569 0.0972 2e-4 0 12,474 0.317

Frankfurt 0 0.0144 0.896 0.0891 0 0 14,627 0.372

info
prop

Virginia 0 0.011 0.0548 0.935 0 0 5,926 0.086
Seoul 2e-4 0.797 5e-4 0.199 0.0028 0 33,180 0.479

Frankfurt 4e-5 0.0418 0.905 0.0532 0 0 27,888 0.403
São Paulo 0 0.465 0.222 0.313 0 0 243 0.003
Sydney 5e-4 0.808 0 0.188 0.0041 0 1,962 0.028

Table 3: For each experiment and machine, we look at when the node first heard about
a block and the location of the peer who told us about the block. For the multiple
vantage point experiment and information propagation experiment, we distinguish
when each location was the first to hear about a block.

is centered(i.e. where blocks are originating from). Thus, we wanted to run an
additional run with clients located far away from the majority of the network to
see how they perceive the network. To do so, we use the information propaga-
tion experiment runs (which occurred about 1 year after the multiple vantage
point experiment runs), where we now include additional nodes in Sydney and
São Paulo. As before, we observe that the North America, Asia, and European
clients all typically hear about blocks first from peers on their continent. How-
ever, when we examine the new vantage points, we observe that the São Paulo
client receives most of its blocks first from Asia, followed by North America then
Europe; the Sydney client receives the vast majority of its blocks first from Asia.

We also examine whether any of our clients are the first to tell one of the
other clients about a block. We observe that though it does happen (especially
from Frankfurt/US/Seoul to São Paulo and Sydney), it is a small fraction of
the 69K blocks mined during these runs. For example, in the multiple vantage
point experiment, our Seoul client is the first to inform the Virginia client, and
Frankfurt is the first to inform the Seoul client about a block first just once,
while the Virginia client tells the Seoul client about 6 blocks first.

As a final analysis, we examine how “quickly” information in the Ethereum
network propagates to our different clients. See Appendix D for the plots of
propagation time for mainchain blocks in both sets of runs. Looking at the mul-
tiple vantage point experiment, the difference from when the first and second
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machines hear about a block is less than 100 milliseconds for 85% of the blocks,
and about 50 milliseconds for 50% of the blocks. However, looking at the in-
formation propagation experiment, we can see that the Sydney and São Paulo
clients are at a clear disadvantage, with a much longer and fatter tail of incoming
messages. We can see this even further in the final column of Table 3, where we
see that the São Paulo client and the Sydney client are the first overall to hear
about blocks only 0.3% and 2.8% of the time, respectively.

5 Discussion

We set out to better understand the structure of the network that powers
Ethereum. How this network operates has implications both on the security of
the underlying blockchain (e.g. the immutability of the blockchain) and on the
experience of users who need access to the blockchain in order to interact with
it (e.g. send/hear about transactions). Prior measurement work on Ethereum
has focused primarily on information stored on the blockchain or on the peer
discovery protocol of Ethereum. The main novelty of this work is on bridging
both observations of peer connectivity behavior with the block information the
peer provides.

In our longitudinal experiment spanning 7 months, we observe a small frac-
tion of the nodes we connect with actually passing all the handshake checks and
becoming full peers. We were able to start a TCP connection with 194,608 nodes
but only ended up successfully peering with 46% of them (Table 1). Moreover, we
found significant churn in the network, with more than 45% of those peers only
staying connected for up to 10 seconds per connection (Figure 6). Additionally
we found that not all of those peers actually tell us about blocks, only about
27% of our peers are useful, but they tend to stay connected for much longer
time than the non-useful ones. Maintaining longer connections with nodes than
previous work allowed us to capture propagation behavior of our peers which re-
vealed how few of the nodes we connected to participate in block propagation.
Furthermore, while examining the unexpected behavior of peers, we were unable
to discover the motivation for the common practice of connecting sporadically
for very short periods of time.

In the longitudinal experiment we were also able to examine miner behavior.
Unsurprisingly we find a small subset of mining ids(primarily big known mining
pools) mine the majority of blocks, but at varying efficiencies(i.e. differing ratios
of mainchain, uncle and prune blocks). Though only about 14% of our full peers
were ever first to announce a block from the top 15 miners to our client, we were
unable to find any correlation between which peers are the first announcers for
which pools. This is likely by design (of the miners) as tracing blocks back to
miners would put them at risk for targeted attacks. Though we do find that first
announcers do maintain longer connections than even the useful peers.

In order to connect the behavior of peers to the speed with which infor-
mation propagates through Ethereum’s peer-to-peer network, we looked at how
long it takes for our peers to tell us about a block after it is mined (Figure 3).
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Though the propagation delay distribution peaks at around 20ms, prunes and
uncles have a longer and heavier tail. This corresponds to mainchain blocks
winning block races. Looking deeper into the tail end of the propagation distri-
bution we do find a variety of odd behavior for all blocks. It is often the case
that blocks continue to be announced to us by new peers for hours after the
first announcement, and even after we have announced the same block to those
peers. It is difficult to speculate whether this behavior is malicious or from slow
machines/connections. Protocol changes to filter this behavior could thus inad-
vertently penalize clients with slow connections or hardware who may be trying
to honestly participate in the network. We find additional odd behavior with
the majority of prune blocks being advertised as having block numbers vastly
deviating from the mainchain height, and being advertised by just a handful
of peers. As these are sent mostly as new hash announcements (and not the
full block), they are likely cheap spamming behavior and should potentially be
filtered by the protocol.

Lastly, by running nodes in several parts of the world, we found that the
location of the node has an effect on when it hears about blocks first and where
it hears them from. Moreover, miners do appear to stand to gain an advantage
by operating out of specific locations that hear about blocks sooner. Our work
suggests that there may be significant locations at a disadvantage, so the extent
of this should be further studied and its implications on the decentralization of
the network. A finer appraisal of delay can also be done by observing transaction
traffic, as there are significantly more transactions flowing through the network
than blocks. Though it is known that transactions can impact consensus [10],
actually linking them to miner behavior is significantly more challenging than
blocks as blocks must originate from the miner but transactions can generally
come from any user in the network. Additionally we believe that understanding
the sporadic behavior of peers and the behavior of those peers not involved in
block propagation is key to understanding the health of Ethereum’s P2P network
and should be a focus for future work. Previous work on Eclipsing attacks on both
Ethereum and Bitcoin networks have shown how high churn in the network aids
an adversary in their attack [21, 22, 29]. Extending connection timeouts to avoid
early disconnects is a counter measure they prose, and based on our observations
could aid in preventing a portion of our disconnects. Though the experiments we
run are resource intensive (e.g. memory and bandwidth to maintain many con-
nections), they can be extended to any P2P network of other cryptocurrencies,
changing only the peer cap limit to be sufficient to hit a representative portion
of the network. As such, comparing our results to the behavior of other networks
would be illuminating.
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Appendix

A Ethereum’s Networking Stack

UDP

PING / PONG
FINDNODE / NEIGHBORS

Peer Discovery Protocol

TCP

HELLO/DISCONNECT RLPx

STATUS
NewBlockMsg, NewBlockHashMsg

etc.
Ethereum Wire
Protocol (eth/64)

DevP2P Protocol

Here we show a breakdown of Ethereum’s networking stack: The two proto-
cols, Peer Discovery and DevP2P, run in parallel, with the former feeding new
peers to the latter to form connections with.

The Discovery protocol discv4 [4] is a UDP protocol based on the Kadem-
lia [31] distributed hash table (DHT) that allows nodes to bootstrap and find
other nodes. Nodes generate an ECDSA key-pair, with the 512-bit public key
acting as their unique identifier (ENODEID).

To bootstrap, a node starts querying peers it already knows about from
previous runs—or the bootstrap nodes, if it knows of no such nodes—for the
other nodes. The client sends a FINDNODE query to learn about other nodes,
who respond with a set of peers whose ENODEID is closest to the requestor’s
ENODEID. In lieu of Kademlia’s conventional XOR distance metric, Ethereum
uses its logdist[29] distance metric, on the hash of the ENODEID.

The Discovery layer is meant to act as a general-purpose layer for multiple
different networks to discover each other.11 Gao et al. [14] measured an average
of over 70,000 active nodes per day in this layer; of those only roughly 10,000
were running the Ethereum-Application layer protocol mentioned below. The
upshot is that just because a node exists in the Discovery layer does not mean
it is running Ethereum.

B Block Propagation Algorithm

A simplified reproduction of how a block is handled and propagated when geth
receives it.
11 other protocols include SWARM, LEA, Whisper or even the Ethereum protocol with

different chain IDs or genesis hash.
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Algorithm 1: Block handling and Propagation Algorithm
Input: block from network, blockchain from storage

1 peer← block.sender peer.has[block.hash] = true if peer.pendingBlocksCount >
64 then

2 return

3 heightDiff ← block.number − blockchain.chainHeight if 32 < heightDiff < -7
then

4 return

5 if block.parent.hash not in blockchain.blocks then
6 return

7 if block.verifyHeader() == False then
8 return

9 propagate(block) /* send entire block */
10 blockchain.insert(block) announce(block) /* send just block hash */

Algorithm 2: block.VerifyHeader()
Input: block, blockchain

1 header ← block.header parent← blockchain.getParent(block) if header.Time >
(Now() + 15 seconds) then

2 return False

3 if header.Time ≤ parent.Time then
4 return False

5 expectedDifficulty ← blockchain.CalcDifficulty(header.Time, parent) if
expectedDifficulty 6= header.difficulty then

6 return False

7 if header.gasLimit > 263 − 1 then
8 return False

9 if header.gasLimit < 5000 then
10 return False

11 if header.gasUsed > header.gasLimit then
12 return False

13 if block.number 6= parent.number +1 then
14 return False

15 return True

Algorithm 3: propagate()
Input: block, allPeers

1 peers← allPeers.withoutBlock(block.hash) transferLen
← max(b

√
peers.lengthc, 4) transferLen ← min(transferLen, peers.length)

propagatePeers← peers[0:transferLen] for peer in propagatePeers do
2 asyncSend(block, peer) peer.has[block.hash] = true
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Algorithm 4: announce()
Input: block, blockchain, allPeers

1 peers← allPeers.withoutBlock(block.hash) if block.hash not in
blockchain.blocks then

2 return

3 for peer in peers do
4 asyncSend(block.hash, peer) peer.has[block.hash] = true

C Peer Cap Experiment

To establish if our 750 peer cap is representative of the network, we ran an
experiment with parallel clients of peer caps of 500, 1000, and 1500 peers in
the us-east-1 Amazon data center (in Virginia, U.S.). We ran this experiment
from February 11, 2020 to March 13, 2020, and we refer to it as the peer cap
experiment. In Figure 7 we see that the 500 peer cap machine is able to reach
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Fig. 7: We look at the instantaneous peer count for each of the peer cap runs, and
a breakdown of the peers by short (<10s), medium (10-1000s) and long (>1000s)
connection lengths.

the cap while the machines with higher caps are not. Likely for the 1000 peer
cap, this is because it is being capped by their inbound connection cap. For the
1500 peer cap, its likely that the machine has maxed the number of peers its
able to connect to given available peers.
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To test this, we ran another client with a higher peer cap (3500). In Figure 8
we show the number of instantaneous peers we had over time, split by whether
we initiated the connection(outbound) or the peer did(inbound). We note our
peers are primarily inbound and that even with a 3500 (2.3K inbound) peer cap,
our client maxed out at 1K peers.
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Fig. 8: We started a node with a cap of 3500 peers. The plot shows the total peers
we were connected to at any time, along with the instigator of the connections. We
made outbound connections to our peers, while inbound connections are when our
peers connected to us.

D Effects of Location on Peers and Propagation
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Fig. 9: Probability distribution for the time between first hearing about a block and
all subsequent NewBlockMsg messages for multiple vantage point experimentand infor-
mation propagation experiment.
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Fig. 10: Average connection length per peer IP for each machine of themultiple vantage
point experiment broken down by peer continent (for N.America,Europe and Asia).

E Ethernodes

Ethernodes [7] is a public web site that reports on aggregate statistics for the
Ethereum network. Between March 30 and October 15th, 2019, we scraped Eth-
ernodes twice a minute for the Ethereum node information they report from
their crawler. Specifically, Ethernodes publishes a list of all nodes who they have
reached in the last 24 hours (including enode id, IP address, time of last contact,
and other information); this list has often been cited as an estimate of the size
of the Ethereum network at any given time. We note that Ethernodes does not
provide details for their data collection methodology, and they did not respond
to our inquiries. We do note that during our experiments, we observed that some
nodes in Ethernodes’ list respond multiple times per minute while our clients
show up in their data as responding around every 10 minutes. Regardless, we
will use the Ethernodes data as a point of comparison for our data analysis.

Ethernodes is widely cited when reporting statistics about the Ethereum
network, including in academic work [16, 19, 13, 24, 23]. Because it is widely cited
when trying to understand Ethereum’s network, we felt it would be useful to
compare our data to theirs. Previous work [28, 3] has claimed that Etherenodes
incorrectly counts Ethereum peers by publishing many nodes who fail some part
of the DevP2P handshake often because they are running the Ethereum Classic
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Fig. 11: Total unique ethernodes.org nodes seen in a day and in an hour. We observe
many nodes that show up only one day and never again in the span of the measurement
study, we plot those as “single responses” by the total that appear in a day and those
broken down by hour. There is an average of about 780 of these per day and 40 per
hour.

or other fork protocol. To dig deeper, Figure 11 shows the number of unique
ENODEIDs that show up in the logs per day and per hour as well as the number
of ids that we see show up only one day and that number broken down by hour.
Overall, ethernodes reports around 12,000 unique ENODEIDs per day, while only
about 3,000 per hour. Almost 800 per day of these are ids that only show up
that day and never again, which adds up to about 68% of all ENODEIDs we see
in our 200-day scraping period (a third of which came from a single IP address).
Similarly, we see a total of 171,241 IP addresses, 30,376 of which correspond to
ENODEIDs which show up only once. Overall, this data is consistent with a large
amount of churn, and that even if we discount some of the ethernodes data as
not being part of the main network, the counts are still a misrepresentation of
the size of the actual or effective Ethereum network at any given moment.


