Threat Detection for Collaborative Adaptive Cruise Control for Connected Cars

Matthew Jagielski*, Nicholas Jones*, Chung-Wei Lin+, Cristina Nita-Rotaru*, Shinichi Shiraishi+

* Northeastern University

+ Toyota ITC

Cristina Nita-Rotaru

Connected Cars Deployment: DSRC

- General Motors:
 - Available in Cadillac CTS sedans since 2017
- Toyota:
 - Toyota and Lexus enabled with DSRC-based V2V communications in Japan since 2015
 - Announced plans to begin deployment of V2V and V2I technology in the U.S. market starting in 2021
- Volkswagen:
 - Announced in 2017 that will have DRSC in Europe beginning in 2019

Safety Applications

- Traffic and congestion control
- Collision avoidance
- Intersection management
- Assisted-turn
- Collaborative adaptive cruise control

How to ensure that safety applications achieve their goal in an adversarial environment?

This Talk

- Consider collaborative adaptive cruise control for connected cars architectures using DSRC
 - Demonstrate the impact of attacks on safety applications
 - Design mitigation techniques

A group of self-driving cars successfully formed a platoon (July 2017) https://www.volpe.dot.gov/

Collaborative Adaptive Cruise Control

- Each car:
 - Periodically broadcasts its own acceleration
- Each follower:
 - Uses input:
 - Preceding car acceleration received via network, i.e. DRSC
 - Local sensors for speed and distance of previous car
 - Computes the new acceleration to maintain a safety time gap

CACC

$$g_{safe} = v * 0.1 + \frac{v^2}{2D^{max}} - \frac{v_p^2}{2D_p^{max}} + 1.0$$
$$a_{t+1} = K_a a_t + K_v (v_p - v) + K_g (g - G_{min} - vT_g)$$

Mani Amoozadeha, Hui Dengb, H. Michael Zhangb Chen-Nee Chuaha, and Dipak Ghosalc. 2015. Platoon Management with Cooperative Adaptive Cruise Control Enabled by VANET. Veh. Commun. 2, 2 (April 2015).

CACC Goals

- Safety:
 - Cars need to maintain a minimum safe time-gap g^t_{safe}
- Efficiency:
 - Platoon of cars should be traveling with as little distance as possible between them
- Passenger comfort:
 - Avoid abrupt changes

$$crash = \max_{T_j} \left\{ 0, \max_i \frac{g_{safe}^t - g_i^t}{g_{safe}^t} \right\}$$

waste_i =
$$\int_{t=0}^{t_{end}} \left(g_i^t - g_{safe}^t \right) dt$$

$$jerk = \frac{da}{dt}$$

Attacker Goal and Capabilities

Goal: impact safety, efficiency and passenger comfort by influencing the computation of the new acceleration

- Influence acceleration of car preceding the victim
 - Attacker has compromised the car preceding the victim and sends incorrect acceleration values via DSRC communication
- Influence RADAR and/or LIDAR sensors of the victim.
 - Attacker has control over just the LIDAR, just the RADAR, and over both LIDAR and RADAR
 - Can manipulate data from the victim's sensors, either directly, by compromising a subset of the victim car, or indirectly, by remotely manipulating the sensor's physical layer signals

How to Model Attacks

- (ACL) Lying about acceleration
 - Passenger comfort
- (VEL) Lying about velocity
 - Efficiency
- (POS) Lying about distance
 - Safety
- (VEL-POS) Lying about velocity and distance
 - Safety

$$a_{fake} = a_{true} + c_a sin(ft)$$

$$v_{\text{fake}} = v_{\text{true}} - c_v t$$

$$d_{fake} = d_{true} + c_d t$$

$$v_{fake} = v_{true} + c_v t$$
$$d_{fake} = d_{true} + c_d t$$

Defenses: Leveraging Invariants

- Cars are physical objects, their behavior in terms of position, velocity, and acceleration must follow certain well defined laws of kinematics
- By using these laws, we can detect inconsistencies between these values as a result of an attack

$$\begin{split} \textbf{PHY} \left(\boldsymbol{\varepsilon}_{p} , \boldsymbol{\varepsilon}_{v} \right) \\ v_{min} t_{d} &+ 0.5 a_{min} t_{d}^{2} - \boldsymbol{\varepsilon}_{p} \leq p_{new} - p_{old} \\ p_{new} - p_{old} \leq v_{max} t_{d} + 0 . 5 a_{max} t_{d}^{2} + \boldsymbol{\varepsilon}_{p} \\ a_{min} t_{d} - \boldsymbol{\varepsilon} v \leq v_{new} - v_{old} \leq a_{max} t_{d} + \boldsymbol{\varepsilon}_{v} \end{split}$$

Defenses: Hidden Markov Models

 Use a Hidden Markov Model, an anomaly detection mechanism, to fit the time series data of CACC and learn temporal dependencies

HMM (δ_h)

- a synchronization phase where cars create the safe gaps
- a stable phase, where cars stay at a roughly fixed velocity.

Simulations Setup

- Simulation is discrete, a run is 400 steps, each step is 0.1s
- Platoon of 7 cars, car length is 5m, cars start at 1m/s with a distance between cars of 10m
- Sensor measurement error with Gaussian noise, with standard deviation of 3cm for LIDAR and 0.1m/s for RADAR
- CACC algorithm: minimum safe-gap is 0.55s, with a 2m leeway, resulting in a 2.55m gap (or 7.55m from front to front including car length); Maximum deceleration is 5m/s²
- > PHY is invoked at each step, and HMM every 50 steps

Summary of Attacks

Attack	Jerk	Waste	Crash
No attack	0.56	2.10	0
ACL	7.07	3.14	0
VEL	0.59	9.32	0
POS	0.73	0.69	1 (crash)
VEL-POS	0.86	0.60	1 (crash)

Detection Rate

Attack	PHY	НММ
No attacks (false positives)	0.35	1.5
ACL (c _a = 5, f = 5)	25.75	77.5
VEL (c _v = 1)	95.13	83.5
VEL (c _v = 0.1)	0.58	79.5
VEL (c _v = 0.05)	0.45	79.5
POS (c _d = 0.1)	0.25	74.0
VEL-POS (c _v = 0.2, c _d = 0.1)	0.13	90.0

ACL Attack

VEL-POS Attack Detection

HMM detects the crash before it occurs !

10

secs

15

20

0

5

Velocity

crash has occurred)

25

Car1

Car4 Car5

Car6

Car7

Victim Car3

Conclusion

- One can not have safety without security:
 - We were able to show how attackers can create crashes
- We also showed attacks that impact efficiency and passenger comfort
- Proposed mitigation techniques that were able to detect the attacks before the crash occurred

https://nds2.ccs.neu.edu/