
Cristina Nita-Rotaru

CS4700/5700: Network
fundamentals

TLS.

1. Many slides courtesy of Christo Wilson and Wil
Robertson

2. Analysis of the HTTPS Certificate Ecosystem,
IMC 2013:
https://jhalderm.com/pub/papers/https-imc13.pdf

3. Analysis of SSL certificate reissues and
revocations in the wake of Heartbleed, IMC
2014:
http://www.ccs.neu.edu/home/cbw/pdf/imc254-
zhang.pdf

TLS2

What is Transport Layer Security (TLS)

} Protocol that allows to establish an end-to-end secure channel,
providing: confidentiality, integrity and authentication

} Defines how the characteristics of the channel are negotiated:
key establishment, encryption cipher, authentication
mechanism

} Requires reliable end-to-end protocol, so it runs on top of
TCP

} It can be used by other session protocols (such as HTTPS)
} Several implementations: for example SSLeay, open source

implementation (www.openssl.org)

TLS3

TLS vs. IPSEC

} Security goals are similar
} IPSec more flexible in services it provides, decouples

authentication from encryption
} Different granularity: IPSec operates between hosts, TLS

between processes
} Performance vs granularity

TLS4

TLS goals

} Confidentiality: Achieved by encryption
} Integrity: Achieved by computing a MAC and send it

with the message;
} Key exchange: relies on public key encryption

} Several version algorithms changed with versions;
} TLS 1.2:

} Replaced the use of MD5-SHA1 with SHA-256
} AES, CCM and GCM modes

} TLS 1.3, draft
} https://tools.ietf.org/html/draft-ietf-tls-rfc5246-bis-00

TLS5

TLS: Protocol architecture

TLS6

}2 layers
protocol

Session and connection

} Session:
} association between a client and a server;
} created by the Handshake Protocol;
} defines secure cryptographic parameters that can be shared by

multiple connections.

} Connection:
} end-to-end reliable secure communication;
} every connection is associated with a session.

TLS7

Session

} Session identifier: generated by the server to identify an
active or resumable session.

} Peer certificate: X 509v3 certificate.
} Compression method: algorithm used to compress the

data before encryption.
} Cipher spec: encryption and hash algorithm, including

hash size.
} Master secret: 48 byte secret shared between the client

and server.
} Is resumable: indicates if the session can be used to

initiate new connections.

TLS8

Connection

} Server and client random: chosen for each connection.
} Server write MAC secret: shared key used to compute

MAC on data sent by the server.
} Client write MAC secret: same as above for the client
} Server write key: shared key used by encryption when

server sends data.
} Client write key: same as above for the client.
} Initialization vector: initialization vectors required by

encryption.
} Sequence numbers: both server and client maintains

such a counter to prevent replay, cycle is 264 - 1.

TLS9

TLS: SSL Record Protocol

} Provides confidentiality and message integrity using shared keys established
by the Handshake Protocol

TLS10

Alert Protocol

} Used to send TLS related alerts to peers
} Alert messages are compressed and encrypted
} Message: two bytes, one defines fatal/warnings, other

defines the code of alert
} Fatal errors: decryption_failed, record_overflow,

unknown_ca, access_denied, decode_error,
export_restriction, protocol_version, insufficient_security,
internal_error

} Other errors: decrypt_error, user_cancelled,
no_renegotiation

TLS11

TLS: Handshake Protocol

} Negotiate Cipher-Suite Algorithms
} Symmetric cipher to use
} Key exchange method
} Message digest function

} Establish the shared master secret
} Optionally authenticate server and/or

client

TLS12

TLS Handshake

BofA
ClientHello(Version, Prefs, Noncec)

ServerHello(Version, Prefs, Nonces)
Certificates({CBofA, CVerisign})

ServerHelloDone
ClientKeyExchange({PreMasterKey}PB

ofA)
ChangeCipherSpec

{Finished}K

ChangeCipherSpec
{Finished}K

Certificate
chain

Encrypted
using

server’s
public keyEncrypted

using
symmetric
session key

Both sides
derive

symmetric
session
key K

from the
PreMaster

Key

SBofA

TLS13

Handshake Protocol: Hello

} Client_hello_message has the following parameters:
} Version
} Random: timestamp + 28-bytes random
} Session ID
} CipherSuite: cipher algorithms supported by the client, first is

key exchange
} Compression method

} Server responds with the same
} Client may request use of cached session

} Server chooses whether to accept or not

TLS14

Supported key exchange

} RSA:
} shared key encrypted with RSA public key

} Fixed Diffie-Hellman:
} public parameters provided in a certificate

} Ephemeral Diffie-Hellman:
} the best; Diffie-Hellman with temporary secret key, messages

signed using RSA or DSS
} Anonymous Diffie-Hellman:

} vulnerable to man-in-the-middle

TLS15

TLS: Authentication

} Verify identities of participants
} Client authentication is optional
} Certificate is used to associate identity with

public key and other attributes, more about this
later

TLS16

A
Certificate

B

Certificate

TLS: Change Cipher Spec/Finished

} Change Cipher Spec completes the setup of the
connections.

} Announce switch to negotiated algorithms and values
} The client sends a message under the new algorithms,

allows verification of that the handshake was
successful.

TLS17

TLS requires digital certificates

} You need a certificate. How do you get one?
} Option 1: generate a certificate yourself

} Use openssl to generate a new asymmetric keypair
} Use openssl to generate a certificate that includes your new

public key
} Drawback:

} Your new cert is self-signed, i.e. not signed by a trusted CA
} Browsers cannot validate that the cert is trustworthy

} Option 2:
} Pay a well-known CA to sign your certificate
} Any browser that trusts the CA will also trust your new cert

TLS18

Certificate authorities (CA)

} CAs are the roots of trust in the TLS PKI
} Symantec, Verisign, Thawte, Geotrust, Comodo, GlobalSign,

Go Daddy, Digicert, Entrust, and hundreds of others
} Issue signed certs on behalf of third-parties

} How do you become a CA?
1. Create a self-signed root certificate
2. Get all the major browser vendors to include your cert

with their software
3. Keep your private key secret at all costs

} What is the key responsibility of being a CA?
} Verify that someone buying a cert for example.com actually

controls example.com
TLS19

X.509 Certificate (Part 1)
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

0c:00:93:10:d2:06:db:e3:37:55:35:80:11:8d:dc:87
Signature Algorithm: sha256WithRSAEncryption

Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert SHA2
Extended Validation Server CA

Validity
Not Before: Apr 8 00:00:00 2014 GMT
Not After : Apr 12 12:00:00 2016 GMT

Subject: businessCategory=Private
Organization/1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.2=Delaware/serialN
umber=5157550/street=548 4th Street/postalCode=94107, C=US, ST=California,
L=San Francisco, O=GitHub, Inc., CN=github.com

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)
Modulus:

00:b1:d4:dc:3c:af:fd:f3:4e:ed:c1:67:ad:e6:cb:

Issuer: who
generated this
cert? (usually a

CA)

Certificates
expire

Used for
revocation

• Subject: who owns
this cert?

• This is Github’s
certificate

• Must be served from
github.com

Github’s
public key

TLS20

X.509 Certificate (Part 2)

X509v3 extensions:
X509v3 Subject Alternative Name:

DNS:github.com, DNS:www.github.com
X509v3 CRL Distribution Points:

Full Name:
URI:http://crl3.digicert.com/sha2-ev-server-g1.crl

Full Name:
URI:http://crl4.digicert.com/sha2-ev-server-g1.crl

X509v3 Certificate Policies:
Policy: 2.16.840.1.114412.2.1
CPS: https://www.digicert.com/CPS

Authority Information Access:
OCSP - URI:http://ocsp.digicert.com

Additional DNS
names that may
serve this cert

If this cert is
revoked, it’s serial

will be in the lists at
these URLS

Policy numbers
are magic (more

on this later)This cert’s
revocation status

may also be
checked via OSCP

TLS21

TLS Certificate Authentication

} During the TLS handshake, the client receives a certificate
chain, i.e. the server’s cert, as well as the certs of the
signing CA(s)

} The client must validate the certificate chain to establish
trust
} Does the server’s DNS name match the common name in the cert?

} E.g. example.com cannot serve a cert with common name
google.com

} Are any certs in the chain expired?
} Is the CA’s signature cryptographically valid?
} Is the cert of the root CA in the chain present in the client’s trusted

key store?
} Is any cert in the chain revoked? (more on this later)

TLS22

Extended Validation Certificates

} What differs between a DV and an EV certs?
} To get a DV cert, the CA verifies that you control the given

common name
} To get an EV cert, the CA does a background check on you

and your company; EV certs cost a lot more than DV certs
} Other than the background check, EV certs offer the same

security as DV certs
} How does your browser tell the difference between DV and EV

certs? Uses the policy number in the X.509 certificate?
} Each CA designates certain magic policy numbers to indicate

EV status
} Your browser contains a hard-coded list of magic policy

numbers to identify EV certs :(
TLS23

Problems with TLS

} TLS is a widely deployed and extremely successful
protocol

} … but its not perfect
} Problems with TLS:

1. CA trustworthiness
2. Weak cyphers and keys
3. Protocol attacks
4. Man-in-the-middle attacks
5. Secret key compromise
6. Implementation bugs

TLS24

Certificate Authorities, Revisited

} A CA is essentially a trusted third party
} Certificate signatures are attestations of authenticity for the

server and (optionally) the client
} Remember: trust is bad and should be minimized!

} If a CA mistakenly (or purposefully) signs a certificate for
a domain and provides it to a malicious principal, TLS can
be subverted
} Recall: any CA can sign a cert for any domain

} Not only must we trust root CAs, but also intermediate
CAs that have been delegated signing authority

TLS25

CA Trustworthiness

} Clearly, the CA secret key must be protected at all costs
} Possession of the CA secret key grants adversaries the ability

to sign any domain
} Attractive target for adversaries

} Signatures should only be issued after verifying the
identity of the requester
} Basic verification = Domain Validation
} Expensive verification = Extended Validation
} Should be easy, right?

TLS26

CA Failures

Issued to: Microsoft Corporation
Issued by: VeriSign Commercial Software Publishers CA
Valid from 1/29/2001 to 1/30/2002
Serial number is 1B51 90F7 3724 399C 9254 CD42 4637 996A

Issued to: Microsoft Corporation
Issued by: VeriSign Commercial Software Publishers CA
Valid from 1/30/2001 to 1/31/2002
Serial number is 750E 40FF 97F0 47ED F556 C708 4EB1 ABFD

} In 2001, Verisign issued two executable signing certificates to
someone claiming to be from Microsoft
} Could be used to issue untrusted software updates

TLS27

Comodo

TLS28

DigiNotar

TLS29

TrustWave

TLS30

Weak Cipher Suites

} TLS allows the use of
different cryptographic
algorithms

} Known weaknesses in
RC4 and MD5

TLS31

Cipher
Suite

Usage in Certs
(as of 2013)

RC4-MD5 2.8%
RC4-
SHA1

48.9%

AES128-
SHA1

1.2%

AES256-
SHA1

46.3%

Weak Keys

} The ZMap team constantly collects all TLS certificates
visible in the IPv4 address space
} http://zmap.io/ (data at https://scans.io/)
} Currently, around 8.3 million certs being served on the

Internet

} Observed repeated keys in-the-wild due to low entropy
} Some systems auto-generate TLS keys at boot
} Low boot-time entropy results in duplicate keys

} Default TLS keys often shipped in network devices
} Attackers can extract private keys from firmware!

TLS32

Protocol Attacks (1)

} Renegotiation attacks
} Allows attacker to renegotiate a connection to the NULL

algorithm and inject plaintext data
} Fixed by requiring cryptographic verification of previous TLS

handshakes

} Version downgrade attacks
} False Start TLS extension allows attackers to modify the

cipher suite list the client sends to server during handshake
} Can force the usage of a known insecure cipher

TLS33

Protocol Attacks (2)

} Padding Oracle On Downgraded Legacy Encryption
(POODLE)
} Cryptographic attack against CBC-mode cyphers when

used with SSL 3.0
} Attacker can use a downgrade attack to force TLS

connections into SSL 3.0
} Allowing security degradation for the sake of

interoperability is dangerous

TLS34

TLS Man-in-the-Middle Attack

} If Ce is self-signed, the user will be shown a warning
} If the attacker steals CBofA and SBofA, then this attack will succeed

unless:
1. Bank of America revokes the stolen cert
2. The client checks to see if the cert has been revoked

} If the attacker manages to buy a valid BofA cert from a CA, then the
only defense against this attack is certificate pinning

BofA
e

SBofA

Se

ClientHello ClientHello

BofAe

Does Ce
validate?

TLS35

Certificate Pinning

} Certificate pinning is a technique for
detecting sophisticated MitM attacks
} Browser includes certs from well-known

websites in the trusted key store by
default

} Usually, only certs from root CAs are
included in the trusted key store

} Example: Chrome ships with pinned
copies of the *.google.com certificate

} Pinning isn’t just for browsers
} Many Android and iPhone apps now

include pinned certificates
} E.g. Facebook’s apps include a pinned cert

Trusted Key Store

Verisign

BofA

Google

TLS36

Key Compromise

} Secret key compromise leads to many devastating
attacks
} Attacker can successfully MitM TLS connections (i.e. future

connections)
} Attacker can decrypt historical TLS packets encrypted using

the stolen key

} Changing to a new keypair/cert does not solve the
problem!

BofA

SBofA

ClientHello ClientHello

BofABofA

CBofA is totally
legit

*BofA

S*BofA

*BofA

BofA

SBofA

TLS37

Expiration

} Certificate expiration is the
simplest, most fundamental
defense against secret key
compromise
} All certificates have an expiration

date
} A stolen key is only useful before

it expires
} Ideally, all certs should have a

short lifetime
} Months, weeks, or even days

} Problem: most certs have a one
year lifetime
} This gives an attacker plenty of

time to abuse a stolen key

Validity
Not Before: Apr

8 00:00:00 2014 GMT
Not After : Apr

12 12:00:00 2016 GMT

X.509 Certificate

TLS38

Certificate Lifetimes

TLS39

Perfect Forward Secrecy

} Perfect Forward Secrecy (PFS) addresses the issue of an attacker
decrypting past TLS sessions after a secret key compromise

} Uses Diffie-Hellman to compute the TLS session key
} Session key is never sent over the wire, and is discarded after the

session completes
} Since the session key cannot be recovered, the attacker cannot decrypt

historical TLS packets, even if they hold the secret key
} PFS does not prevent MiTM attacks; future TLS sessions are still

in danger

BofA

ClientKeyExchange({PreMasterKey}PBofA)

ChangeCipherSpec

{Finished}K

SBofA

…
…

Given SBofA, attacker can decrypt
the {PreMasterKey}PBofA of any TLS
sessions, thus past and future TLS
packets can be decrypted

TLS40

Recent developments, ACM CCS 2015

} Summary: Logjam, active MITM attack that downgrades TLS
to 512-bit DHE export-grade cipher suites. They broke a 512
prime (many sites use the same one), estimate that an
academic team can break a 768-bit prime and that a nation-
state can break a 1024-bit prime.

} Impact: TLS with support for export cipher and any protocol
using DH with 1024 or less and reusing the prime.

} What to do: Disable support for export cipher suites and use
a 2048-bit Diffie-Hellman group

Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice, D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot,
E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann,
Best Paper Award

TLS41

Revocation

} Certificate revocations are another fundamental
mechanism for mitigating secret key compromises
} After a secret key has been compromised, the owner is

supposed to revoke the certificate

} CA’s are responsible for hosting databases of revoked
certificates that they issued

} Clients are supposed to query the revocation status of all
certificates they encounter during validation
} If a certificate is revoked, the client should never accept it

} Two revocation protocols for TLS certificates
1. Certificate Revocation Lists (CRLs)
2. Online Certificate Status Protocol (OCSP)

TLS42

Certificate Revocation Lists

} CRLs are the original mechanism for announcing and
querying the revocation status of certificates

} CAs compile lists of serial numbers of revoked
certificates
} URL for the list is included in each cert issued by the CA
} CRL is signed by the CA to protect integrity

TLS43

X.509 Certificates, Revisited

Certificate:
Data:

Subject: businessCategory=Private
Organization/1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.
2=Delaware/serialNumber=5157550/street=548 4th
Street/postalCode=94107, C=US, ST=California, L=San
Francisco, O=GitHub, Inc., CN=github.com

X509v3 extensions:
X509v3 Subject Alternative Name:

DNS:github.com, DNS:www.github.com
X509v3 CRL Distribution Points:

Full Name:
URI:http://crl3.digicert.com/sha2-ev-server-g1.crl

Full Name:
URI:http://crl4.digicert.com/sha2-ev-server-g1.crl

Authority Information Access:
OCSP - URI:http://ocsp.digicert.com

URLs where clients
can find the CRLs

for this cert

If the cert is revoked,
this serial number will

appear in the CRL

TLS44

Problems with CRLs

} Clients should check the revocation status of every cert they
encounter
} Leaf, intermediate, and root certs

} Problems
} Latency – additional RTTs of latency are needed to check CRLs

before a page will load
} Size – CRLs can grow to be quite large (~MBs), downloads may be

slow
} MitM attackers can block access to the CRL/OCSP URLs

} Browsers default-accept certificates if the revocation status cannot be
checked

} Does caching CRLs mitigate these performance problems?
} Yes, somewhat
} But caching CRLs for long periods is dangerous: they may be out of

date

TLS45

Online Certificate Status Protocol

} OCSP is the modern replacement for CRLs
} API-style protocol that allows clients to query the revocation

status of one or more certs
} No longer necessary to download the entire CRL

} CA’s host an OCSP server that clients may query
} OCSP URL included in OCSP-compliant certs
} Responses are signed by the CA to maintain integrity
} Responses also include an expiration date to prevent replay

attacks

TLS46

X.509 Certificates, Revisited

Certificate:
Data:

Subject: businessCategory=Private
Organization/1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.
2=Delaware/serialNumber=5157550/street=548 4th
Street/postalCode=94107, C=US, ST=California, L=San
Francisco, O=GitHub, Inc., CN=github.com

X509v3 extensions:
X509v3 Subject Alternative Name:

DNS:github.com, DNS:www.github.com
X509v3 CRL Distribution Points:

Full Name:
URI:http://crl3.digicert.com/sha2-ev-server-g1.crl

Full Name:
URI:http://crl4.digicert.com/sha2-ev-server-g1.crl

Authority Information Access:
OCSP - URI:http://ocsp.digicert.com

URLs where clients
can find the OCSP
server for this cert

Query the serial number
to see if this cert has

been revoked

TLS47

OCSP Must-Staple

BofA

Client
accepts the
cert if the

OCSP
response is
stapled and

valid

SBofA

BofA

OCSP
Database

Ca
Cb

CBofA

Is CBofA
revoked?

No, its not.

BofA

OCSP
response is
“stapled” to

the cert

Is CBofA
revoked?

Yes, it is.

• The good:
• Clients don’t need to query

revocation status at all
• Attacker cannot prevent clients

from receiving revocation
information

• The bad: OCSP Must-Staple is very
new, not supported by many browsers
and certs TLS48

Revocation in Practice

} Revocation is one of the most broken parts of the TLS
ecosystem

} Many administrators fail to revoke compromised
certificates

} MitM attackers can block access to the CRL/OCSP URLs
} Browsers default-accept certificates if the revocation

status cannot be checked
} Solved by OCSP Must-Staple, but this extension is not

well deployed

TLS49

Revocation in Practice

} Many browsers do not perform proper revocation checks
} Chrome only does CRL/OCSP checks on EV certs, and

only on some platforms
} Windows –Yes,
} Linux and Android – No
} Chrome uses an alternative implementation called CRLset which

is busted

} Firefox only supports OCSP
} But fewer than 5% of certificates use OCSP

} Mobile browsers almost never check for revocations
} Adds additional latency to HTTPS connections onto already slow

mobile networks
TLS50

Implementation bugs

} Cryptography often assumed to be perfect
} Usually the math is solid, but the implementation is found

wanting

} Two major recent examples of security vulnerabilities due
to TLS implementation bugs
} Apple's Double Fail
} Heartbleed

TLS51

Apple’s Double Fail, a.k.a. Goto Fail

} What’s wrong with this code?

// ...
if ((err =
SSLHashSHA1.update(&hashCtx,
&serverRandom)) != 0)

goto fail;
if ((err =
SSLHashSHA1.update(&hashCtx,
&signedParams)) != 0)

goto fail;
goto fail;

if ((err =
SSLHashSHA1.final(&hashCtx,
&hashOut)) != 0)

goto fail;
// ...

fail:

• Example of an
implementation
vulnerability in TLS
signature verification

• Found in February
2014, present in iOS
6 and OS X

TLS52

HeartBleed

} Serious vulnerability OpenSSL versions 1.0.1 – 1.0.1f
} Publicly revealed April 7, 2014
} Exploits a bug in the TLS heartbeat extension

} Allows adversaries to read memory of vulnerable
services
} i.e., buffer over-read vulnerability
} Discloses addresses, sensitive data, potentially TLS secret keys

} Major impact
} OpenSSL is the de facto standard implementation of TLS, so

used everywhere
} Many exposed services, often on difficult-to-patch devices
} Trivial to exploit

TLS53

Heartbleed Exploit Example

BofA SBofAHeartbeat(str=“”,
len=65535)

Echo(“A$fskndvknla…
CERTIFICATE – PRIVATE KEY

234nwlkw3rFAF … *$DvdsaeE”)

Heartbeat(str=“Hello”
, len=5)

Echo(“Hell
o”)

TLS54

Heartbleed as a Natural Experiment

} Secret keys could have been stolen from all Heartbleed-
vulnerable servers

} We know that administrators should have done three
things on April 7, 2014:

1. Patch their copy of OpenSSL
2. Reissue their certificate with a new asymmetric keypair
3. Revoke their old (potentially compromised) certificate

} Question: did administrators do these things?
} If so, how quickly did they respond?

TLS55

Heartbleed-vulnerable Servers

23 days after
Heartbleed, 5% of

servers still unpatched

TLS56

Revocations Over Time

• People did revoke many
vulnerable certs

• But, security takes the
weekend off :(

TLS57

Reissues and Revocations
87% of vulnerable
certs were never

revoked!

72% of vulnerable
certs were never

reissued!
TLS58

Are People Stupid?
Before Heartbleed, 43% of
certs are reissued with the

same key pair

After Heartbleed, 4% of
certs are reissued with the

same key pair TLS59

How Long Will We Be Dealing With
Heartbleed?

40% of vulnerable
certs won’t expire for

year :(

TLS60

Other TLS Attacks

} Other interesting attacks on TLS
} TLS stripping
} BEAST
} CRIME
} BREACH
} Lucky Thirteen

} We'll talk about these in the context of web security

TLS61

Take home lessons

} TLS is crucial for maintaining security and privacy on the
Web
} Mature, well supported protocol
} In theory, offers strong security guarantees

} Unfortunately, TLS is plagued by many issues
} Many different protocol-level issues that enable MitM attacks
} TLS implementations are buggy
} Human beings fail to reissue/revoke certificates properly
} Browsers fail to perform revocation checks

TLS62

Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Diffie-Hellman and IPsec examples courtesy of Wikipedia

3. Analysis of the HTTPS Certificate Ecosystem, IMC 2013:
https://jhalderm.com/pub/papers/https-imc13.pdf

4. Analysis of SSL certificate reissues and revocations in the wake of Heartbleed, IMC 2014:
http://www.ccs.neu.edu/home/cbw/pdf/imc254-zhang.pdf

TLS63

