Cristina Nita-Rotaru

CS4700/5700: Network fundamentals

Physical layer.

1: Physical layer

Physical Layer

Function:

- Get bits across a physical medium
- Key challenge:
 - How to represent bits in analog
 - Ideally, want high-bit rate
 - But, must avoid desynchronization

Let's get digital

Digital computers

- Os and Is
- Analog world
 - Amplitudes and frequencies

Assumptions

- We have two discrete signals, high and low, to encode 1 and 0
- Transmission is synchronous, i.e. there is a clock that controls signal sampling

Non-Return to Zero (NRZ)

▶ $I \rightarrow high signal, 0 \rightarrow low signal$

Problem: long strings of 0 or 1 cause desynchronization
How to distinguish lots of 0s from no signal?
How to recover the clock during lots of 1s?

Desynchronization

Problem: how to recover the clock during sequences of 0's or 1's?

Non-Return to Zero Inverted (NRZI)

▶ $I \rightarrow$ make transition, $0 \rightarrow$ remain the same

Solves the problem for sequences of 1s, but not 0s

4-bit/5-bit (100 Mbps Ethernet)

more than one leading 0 and two trailing 0

4-bit	5-bit	4-bit	5-bit
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
ott: etticiend	No drods	to 80%111	11101

Tradeoff: efficiendy or appropriate

Manchester

▶ $I \rightarrow high-to-low, 0 \rightarrow low-to-high$

Good: Solves clock skew (every bit is a transition)
Bad: Halves throughput (two clock cycles per bit)

General comment

Physical layer is the lowest, so...

- We tend not to worry about where to place functionality
- There aren't other layers that could interfere
- We tend to care about it only when things go wrong
- Physical layer characteristics are still fundamentally important to building reliable Internet systems
 - Insulated media vs, wireless
 - Packet vs. circuit switched media
 - Propagation speed, energy consumption, cost, ...

