Cristina Nita-Rotaru

CS4700/5700: Network
fundamentals

Intradomain routing.

Network Layer, Control Plane

» Function:

Set up routes within a single network
» Key challenges:
Application Distributing and updating routes

Presentation Convergence time
Avoiding loops

Data Plane

Session

Transport l_l_\

m oIz =N NEIcIzM Control Plane

Physical

Internet Routing

» Internet organized as a two level hierarchy

» First level — autonomous systems (AS’s)
AS — region of network under a single administrative domain
Examples: Comcast, AT&T, Verizon, Sprint, etc.

Internet Routing

» Internet organized as a two level hierarchy

» First level — autonomous systems (AS’s)
AS — region of network under a single administrative domain
Examples: Comcast, AT&T, Verizon, Sprint, etc.

» AS’s use intra-domain routing protocols internally

Distance Vector, e.g., Routing Information Protocol (RIP)
Link State, e.g., Open Shortest Path First (OSPF)

Internet Routing

» Internet organized as a two level hierarchy

» First level — autonomous systems (AS’s)
AS — region of network under a single administrative domain
Examples: Comcast, AT&T, Verizon, Sprint, etc.

» AS’s use intra-domain routing protocols internally

Distance Vector, e.g., Routing Information Protocol (RIP)
Link State, e.g., Open Shortest Path First (OSPF)

» Connections between AS’s use inter-domain routing
protocols
Border Gateway Routing (BGP)
De facto standard today, BGP-4

xample

~
4,

AS |

xample

~
4,

AS |

| -
O
e
()
e
-

Why Do We Need ASes?

» Routing algorithms are not efficient enough to
execute on the entire Internet topology

Why Do We Need ASes?

» Routing algorithms are not efficient enough to
execute on the entire Internet topology

» Different organizations may use different routing
policies

Why Do We Need ASes?

» Routing algorithms are not efficient enough to
execute on the entire Internet topology

» Different organizations may use different routing
policies

» Allows organizations to hide their internal network
structure

Why Do We Need ASes?

» Routing algorithms are not efficient enough to
execute on the entire Internet topology

» Different organizations may use different routing
policies

» Allows organizations to hide their internal network
structure

» Allows organizations to choose how to route across
each other (BGP)

Why Do We Need ASes?

» Routing algorithms are not efficient enough to
execute on the entire Internet topology

* Easier to compute routes
 Greater flexibility

* More autonomy/independence

Routing on a Graph

» Goal: determine a “good” path through the network
from source to destination
» What is a good path?
Usually means the shortest path
Load balanced
Lowest $$$ cost

Routing on a Graph

» Goal: determine a “good” path through the network
from source to destination
» What is a good path?
Usually means the shortest path
Load balanced
Lowest $$$ cost
» Network modeled as a graph

Routers = nodes

Link - edges 1
Edge cost: delay, congestion level, etc.

Routing Problems

» Assume
A network with N nodes

Each node only knows
Its immediate neighbors
The cost to reach each neighbor

» How does each node learn the

shortest path to every other
node?

Intra-domain Routing Protocols

Intra-domain Routing Protocols

» Distance vector

Routing Information Protocol (RIP), based on Bellman-
Ford

Routers periodically exchange reachability information
with neighbors

Intra-domain Routing Protocols

» Distance vector

Routing Information Protocol (RIP), based on Bellman-
Ford

Routers periodically exchange reachability information
with neighbors

» Link state

Open Shortest Path First (OSPF), based on Dijkstra

Each network periodically floods immediate reachability
iInformation to all other routers

Per router local computation to determine full routes

1: Distance Vector Routing

Distance Vector Routing

» What is a distance vector?
Current best known cost to reach a destination

» ldea: exchange vectors among neighbors to learn
about lowest cost paths

Distance Vector Routing

» What is a distance vector?
Current best known cost to reach a destination

» ldea: exchange vectors among neighbors to learn
about lowest cost paths

No entry for C
A 7 Initially, only has info for
DV Table g L immediate neighbors
at Node C p 5
= c 9 Other destinations cost = ®©
F 1 Eventually, vector is filled

Distance Vector Routing

» What is a distance vector?
Current best known cost to reach a destination

» ldea: exchange vectors among neighbors to learn
about lowest cost paths

No entry for C
A 7 Initially, only has info for
DV Table g L immediate neighbors
at Node C p 5
= c 9 Other destinations cost = ®©
F 1 Eventually, vector is filled

Routing Information Protocol (RIP)

Distance Vector Routing Algorithm

1. Walit for change in local link cost or
message from neighbor

2. Recompute dist*ce table

3. If least cost path¥to any destination
has changed, notify neighbors

Distance Vector Initialization

Node A Node B

Dest. [cost Next JllDest. |Cost Next
B 2 B A 2 A

L
v C 7 C C 1 C

D 00 D 3 D

Initialization: Node C Node D

ISt N <. |Cost |Next [MlDest. |Cost |Next
A 7 A A 00

if V adjacentto A
DA, V)=c(AV);, B 1 B B 3 B
else D 1 D C 1 C

D(A. V) = «:

Distance Vector: 1st Iteration

Node A Node B

o—o CNCTNCT CICTICTE

' A B
C 7 C C 1 C

D 00 D 3 D

loop:

else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y th h
| rg(Ae,S v')ni 'S)PA,V) iort;?v, \\//)); Node C Node D

else
DA, V) = Dest. |Cost |Next [l Dest. |Cost |Next
min(D(A, Y), A 7 A A -
D(A, V) + D(V, Y));
if (there is a new min. for dest. Y) B 1 B B 3 B

send D(A, Y) to all neighbors
forever D 1 D C 1 C

Distance Vector: 1st Iteration

Node A Node B

g BN - CNCTNCT CICTICTE

/:é/ (E; 7 C C 1 C

D 00 D 3 D

loop:

else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y th h
| rg(Ae,S v')ni 'S)PA,V) iort;?v, \\//)); Node C Node D

else
DA, V) = Dest. |Cost |Next [l Dest. |Cost |Next
min(D(A, Y), A 7 A A -
D(A, V) + D(V, Y));
if (there is a new min. for dest. Y) B 1 B B 3 B

send D(A, Y) to all neighbors
forever D 1 D C 1 C

Distance Vector: 1st Iteration

loop:

12, else if (update D(V, Y) received fro
15 for all destinations Y do

14, if (destination Ythrough .
15 D(A,Y) = DL :
L e D(A.D) = min(D(A,D), D(A,C)+D(C,D))
rg(i =min(e, 7+1)=8
18 if (there is a new min. for dest. Y) B 1 B B 3 B

9. send D(A, Y) to all neighbors
20. >forever D 1 D C 1 C

Distance Vector: 1st Iteration

loop:

12, else if (update D(V, Y) received fro
15 for all destinations Y do

14, if (destination Ythrough .
15 D(A,Y) = DL :
L e D(A.D) = min(D(A,D), D(A,C)+D(C,D))
rg(i =min(e, 7+1)=8
18 if (there is a new min. for dest. Y) B 1 B B 3 B

9. send D(A, Y) to all neighbors
20. >forever D 1 D C 1 C

Distance Vector: 1st Iteration

3 Node A Node B
est. |Cost nert Qs Comt Text
92/7 1 / B 2 B A 2 A
c 7 ¢C cC 1 ¢©
4 D D 3 D

loop:

else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y th h
| rg(Ae,S v')ni 'S)PA,V) iort;?v, \\//)); Node C Node D

else
DA, V) = Dest. |Cost |Next [l Dest. |Cost |Next
min(D(A, Y), A 7 A A -
D(A, V) + D(V, Y));
if (there is a new min. for dest. Y) B 1 B B 3 B

send D(A, Y) to all neighbors
forever D 1 D C 1 C

Distance Vector: 1st Iteration

12 else if (update D(V, Y) re

e D(A C) = min(D(A,C), D(A,B)+D(B,C))

15. D(A, - - -
16. els(e " - mln(7= 2+ 1) =3
17. D(A, Y) =
min(D(A, Y), A 2 A A o
D(A, V) + D(V, Y));
18, if (there is a new min. for dest. Y) B 1 B B 3 B
9. send D(A, Y) to all neighbors D C 1 C

20. >forever D 1

Distance Vector: 1st Iteration

12 else if (update D(V, Y) re

e D(A C) = min(D(A,C), D(A,B)+D(B,C))

15. D(A, - - -
16. els(e " - mln(7= 2+ 1) =3
17. D(A, Y) =
min(D(A, Y), A 2 A A o
D(A, V) + D(V, Y));
18, if (there is a new min. for dest. Y) B 1 B B 3 B
9. send D(A, Y) to all neighbors D C 1 C

20. >forever D 1

Distance Vector: 1st Iteration

3 Node A Node B
est. |Cost nert Qs Comt Text
92/7 1 / B 2 B A 2 A
c 78 c cC 1 ¢©
4 D D 3 D

loop:

else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y th h
| rg(Ae,S v')ni 'S)PA,V) iort;?v, \\//)); Node C Node D

else
DA, V) = Dest. |Cost |Next [l Dest. |Cost |Next
min(D(A, Y), A 7 A A -
D(A, V) + D(V, Y));
if (there is a new min. for dest. Y) B 1 B B 3 B

send D(A, Y) to all neighbors
forever D 1 D C 1 C

Distance Vector: 1st Iteration

3 Node A Node B
est. |Cost nert Qs Comt Text
92/7 1 / B 2 B A 2 A
c 78 c cC 1 ¢©
4 D D 3 D

loop:

else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y th h
| rg(Ae,S v')ni 'S)PA,V) iort;?v, \\//)); Node C Node D

else
DA, V) = Dest. |Cost |Next [l Dest. |Cost |Next
min(D(A, Y), A 7 A A -
D(A, V) + D(V, Y));
if (there is a new min. for dest. Y) B 1 B B 3 B

send D(A, Y) to all neighbors
forever D 1 D C 1 C

Distance Vector: 1st Iteration

Node A Node B

o—o CNCTNCT CICTICTE

' A B
C 7 C C 1 C

D 00 D

loop:

else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V,) Node C Node D
else
D(A,Y) =
min(D(A, Y), A
D(A, V) + D(V, Y));
if (there is a new min. for dest. Y) B
D

send D(A, Y) to all neighbors
forever

Distance Vector: End of 3td Iteration

Node A Node B

" BN Nt [Cost Next [MDest |Cost Next
2 B A 2 A

7\ A 8
“7& C 3 B cC 1 C

D 4 B D 2 C
loop:

else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y th h
| rg(Ae,S v')ni 'S)PA,V) iort;?v, \\//)); Node C Node D

else

DA, V) = Dest. |Cost |Next [l Dest. |Cost |Next
D(A, V) + D(V, Y));

if (there is a new min. for dest. Y) B 1 B B 2 C

send D(A, Y) to all neighbors
forever D 1 D C 1 C

18.
19.

20

Distance Vector: End of 3t Iteration

* Nothing changes, algorithm terminatzs

* Until something changes...

| DA, Y) =

D(A, V) + D(V, Y)); &=
if (there is a new min. for dest. Y) B 1 B B 2 C

send D(A, Y) to all neighbors
: >forever

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y)= D(AY)+d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));
if (there is a new minimum for destination Y)
send D(A, Y) to all neighbors
forever

D C N

NodeB A 24 A
C 1 B
D [C [N
NodeC A 5 B
B 1 B

- >

Time

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y)= D(AY)+d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));
if (there is a new minimum for destination Y)
send D(A, Y) to all neighbors
forever

D C N

NodeB A 24 A
C 1 B
D [C [N
NodeC A 5 B
B 1 B

- >

Time

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y)= D(AY)+d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A Y)= mm(D(A Y) D(A V) + D(V, Y));

tination Y)
i

NodeB A 2 A

C 1 B C 1 B

D c /N D (C N
NodeC A 5 B A 5 B

B 1 B B 1 B

Time

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y)= D(AY)+d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A Y)= mln(D(A Y) D(A V) + D(V, Y));
' tination Y)

D C N

N S0 C [N
A A 1A

NodeB A 4 A A
C 1 B C
ﬂlﬂl D |C [N ﬂlﬂl
NodeC A 5 B A 5 B
B 1 B B 1 B B 1 B

Time

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y)= D(AY)+d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A Y)= mm(D(A Y) D(A V) + D(V, Y));

tination Y)

Do

N D C [N

D C N

NodeBA4A A A A 1 A A 1 A
C 1 B C

ﬂlﬂl D |C [N ﬂlﬂl ﬂlﬂl

NodeC A 5 B A 5 B A 2 B

B 1 B B 1 B B 1 B B 1 B

Time

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y)= D(AY)+d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A,Y) = mln(D(A Y), D(A, V) + D(V Y));
if (there is
send D(
forever

NodeB A 2 A

C 1 B C
ﬂlﬂl D |C [N ﬂlﬂl ﬂlﬂl
NodeC A 5 B A 5 B A 2 B
B 1 B B 1 B B 1 B B 1 B

Time

Count to Infinity Problem

D [C N
Node BA 4 A

C 1 C

D [C [N |
Node CA 5 B

B 1 B

Time

Count to Infinity Problem

'V Announcement Cache
Node A Node C

CHCE CHCH
B 4 A5

C 5 B 1 ﬂm
Node BA 4 A

C 1 C

D |C [N

Node CA 5 B

B 1 B

Time

Count to Infinity Problem

'V Announcement Cache mﬂ
Node A Node C S ARY
b Jc o [c | LA = C
B 4 A 5
C 5 B 1 ﬂm

Node BA 4 A
C 1 C
D [C [N
Node CA 5 B
B 1 B

Time

Count to Infinity Problem

)V Announcement Cache mﬂ
Node A Node C DUV RN
b Jc b c | LA = C
B 4 A 5
C 5 B 1

D |C [N ﬂlﬂl
Node BA 4 A

C 1 C C 1 C

D |c [N D [Cc [N

Node CA 5 B A 5 B

B 1 B B 1 B a

Time

Count to Infinity Problem

C has a path to Ain 5 hops
Thus, D(B,A) =6!
However, B does not know

the pathisC > B 2> A

D C N |

A 4 A

C 1 C
D |C N |
Node CA 5 B A5 B

B 1 B B 1 B a

Time

Count to Infinity Problem

)V Announcement Cache mﬂ
Node A Node C oMly \1
b Jc b c | LA = C
B 4 A 5

C 5 B 1
D [C N ﬂlﬂl D [C N

NOdeBA4A A6 C

ﬂl'!l ﬂl'!l EII'II

Node CA 5 B A 5 B A 7 B

B 1 B B 1 B B 1 B a

Time

Count to Infinity Problem

'V Announcement Cache mﬂ
Node A Node C 2Lly \1
oo b lc_ A C
B 4 A 7

C 5 B 1
D [C N ﬂlEI D [C N EIEI

NOdeBA4A A6 C

EIEI EIEI EII'II EII'II
Node CA 5 B A 5 B A 7 B A 7 B
B 1 B B 1 B B 1 B B 1 B

—_— >

Time

Count to Infinity Problem

o o™ s \

Node CA 5 B A 5 B A 7 B A 7 B
B 1 B B 1 B B 1 B B 1 B

—_—

Time

Poisoned Reverse

» If C routes through B to getto A

C tells B that D(C, A) = o

'V Announcement Cache
Node A Node C

D |c D [C |
B 4 A o
C = B
— CHCECH
Node BA 4 A
C 1 B
D |C N |
Node CA 5 B
B 1 B

Time

Poisoned Reverse

» If C routes through B to getto A

C tells B that D(C, A) = o

'V Announcement Cache
Node A Node C

D [c (D [c
R 4 A o
0. B
— CHCECH
Node BA 4 A
C 1 B
D |C N |
Node CA 5 B
B 1 B

Time

Poisoned Reverse

» If C routes through B to getto A

C tells B that D(C, A) = o

'V Announcement Cache
Node A Node C

D |c D [C |
B 4 A o
C = B
— CHCECH
Node BA 4 A
C 1 B
D |C N |
Node CA 5 B
B 1 B

Time

Poisoned Reverse

» If C routes through B to getto A
C tells B that D(C, A) = «

'V Announcement Cache B
Node A Node C m/ \1
b [c] Ell LA G
B 4
MLl EREE S TC ﬂ-EI

Node BA 4 A
C 1 B
D [C [N | EIIIII

Node CA 5 B A5 B

B 1 B B 1 B

Time

Poisoned Reverse

» If C routes through B to getto A
C tells B that D(C, A) = «

)V Announcement Cache B B
Node A Node C SOVARN
b Jc b c | LA G
B 4 A o

C B
: b [c v ﬂ-EI D [C_IN_

NOdeBA4 A A 60 A

B
ﬂl'!l EIEI EIEI

Node CA 5 B A 5 B A 50 A

B 1 B B 1 B B 1 B E

Time

Poisoned Reverse

» If C routes through B to getto A
C tells B that D(C, A) = «

)V Announcement Cache 56 B
Node A Node C SOVARN
b [c 8o [c | LA G

B 4 A 50

C B 1
: D [C N ﬂ-EI D [C_IN_ E-EI

Node BA 4 A A 60 A
B B
EIIII EIIII EIEI EIEI
Node CA 5 B A 5 B A 50 A A 50 A
B 1 B B 1 B B 1 B B 1 B

Time

Poisoned Reverse

» If C routes through B to get to A

» Ctells B that D(C, A) = o

B _
260K

Does this completely solve this countto el

infinity problem?
NO
Multipath loops can still trigger the issue

B 1 B B 1 B B 1 B B 1 B

2: Link State Routing

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

_—

?\
v

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

» Each node tells every other node this information

_—

?\
v

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

» Each node tells every other node this information

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

» Each node tells every other node this information

LS -

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

» Each node tells every other node this information

==
(==

Nl
@\
<

(¢ ¢ ¢

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

» Each node tells every other node this information
» Each node learns complete network topology

-
A%

Link State Routing

Link State Routing

» Each node knows its connectivity and cost to direct
neighbors

» Each node tells every other node this information
» Each node learns complete network topology
» Use Dijkstra to compute shortest paths

==

Flooding Details

» Each node periodically generates Link State Packet

ID of node generating the LSP
List of direct neighbors and costs
Sequence number (64-bit, assumed to never wrap)

Time to live

Flooding Details

» Each node periodically generates Link State Packet
ID of node generating the LSP
List of direct neighbors and costs
Sequence number (64-bit, assumed to never wrap)
Time to live

» Flood is reliable (ack + retransmission)

Flooding Details

» Each node periodically generates Link State Packet
ID of node generating the LSP
List of direct neighbors and costs
Sequence number (64-bit, assumed to never wrap)
Time to live

» Flood is reliable (ack + retransmission)

» Sequence number “versions” each LSP

Flooding Details

» Each node periodically generates Link State Packet
ID of node generating the LSP
List of direct neighbors and costs
Sequence number (64-bit, assumed to never wrap)
Time to live

» Flood is reliable (ack + retransmission)
» Sequence number “versions” each LSP

» Receivers flood LSPs to their own neighbors
Except whoever originated the LSP

Flooding Details

» Each node periodically generates Link State Packet
ID of node generating the LSP
List of direct neighbors and costs
Sequence number (64-bit, assumed to never wrap)
Time to live

» Flood is reliable (ack + retransmission)
» Sequence number “versions” each LSP

» Receivers flood LSPs to their own neighbors
Except whoever originated the LSP

» LSPs also generated when link states change

Dijkstra’s Algorithm

Step __|StatS_|5B___>C___ 9D 9E ___>F
0 A 2,A 5 A 1,A 00 00

Initialization:
S ={A};
for all nodes v
if v adjacentto A
then D(v) = c(A,v);
else D(v) = »;

Dijkstra’s Algorithm

Step __|StatS_|5B___>C___ 9D 9E ___>F
0 A 2, A 5 A 1,A 00 00

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;
update D(v) for all v adjacent
tow and not in S:
D(v) = min(D(v), D(w) + c(w,v));
until all nodes in S;

Dijkstra’s Algorithm

Step |StartS 9B [>C___ 5D |5E |>F
0 A 2, A 5 A 1, A 0 0

1 AD 4, D 2,D 00

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;
update D(v) for all v adjacent
tow and not in S:
D(v) = min(D(v), D(w) + c(w,v));
until all nodes in S;

Dijkstra’s Algorithm

Step |StartS 9B [>C___ 5D |5E |>F
0 A 2, A 5 A 1, A 0 0

AD 4,D 2. D -
2 ADE 3. E 4, E

Loop

find w not in S s.t. D(w) is a minimum;
add w to S;

5
1\. date D(v) for all v adjacent
= update D(v) for all v adjacen

3 P tow and not in S:

1 '}113 2 D(v) = min(D(v), D(w) + c(w,v));

until all nodes in S;

Dijkstra’s Algorithm

Step __|StatS_|5B___>C___ 9D 9E ___>F
2, A 5 A 1,A 00 00

0 A

1 AD 4,D 2,D 00
2 ADE 3, E 4, E
3 ADEB

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;

\5
1 - update D(v) for all v adjacent
N\ 3 | / 5 tow and notin S:

| O WD 2

D(v) = min(D(v), D(w) + c(w,Vv));
until all nodes in S;

Dijkstra’s Algorithm

Step __|StatS_|5B___>C___ 9D 9E ___>F
2, A 5 A 1,A 00 00

0 A

1 AD 4,D 2,D 00
2 ADE 3, E 4, E
3 ADEB

4 ANFRC

Loop
5 find w not in S s.t. D(w) is a minimum;
N add w to S;
1 update D(v) for all v adjacent
3 H / to w and not in S:
2 D(v) = min(D(v), D(w) + c(w,v));

1
'}113 until all nodes in S;

Dijkstra’s Algorithm

Step __|StatS_|5B___>C___ 9D 9E ___>F
2, A 5 A 1,A 00 00

0 A
1 AD 41 D 2, D 00
2 ADE 3, E 4, E
3 ADEB
4 ADEBC
5 ADEBCF
5
Loop
2 - 5 find w not in S s.t. D(w) is @ minimum;
4;11;;1??' 1 \ add w to S;
1 update D(v) for all v adjacent

towand notin S;

!:::iiiiijj;; 3 | :;,f;;i;;:iifiii’j;:'t: .
1 '31 2 D(v) = min(D(v), D(w) + c(w,Vv));

until all nodes in S;

OSPF vs. IS-IS

Two different implementations of link-state routing

4

OSPF

4

1S-1S

22

OSPF vs. IS-IS

Two different implementations of link-state routing

p OSPF) 1S-1S

» Favored by companies,
datacenters

22

OSPF vs. IS-IS

Two different implementations of link-state routing

p OSPF) 1S-1S

» Favored by companies,
datacenters

» More optional features

22

OSPF vs. IS-IS

Two different implementations of link-state routing

‘ OSPF

‘ 1S-1S

» Favored by companies,
datacenters

» More optional features

» Built on top of IPv4

LSAs are sent via |IPv4
OSPFv3 needed for IPv6

» Favored by ISPs

» Less “chatty”
Less network overhead
Supports more devices

» Not tied to IP
Works with IPv4 or IPv6

22

Different Organizational Structure

3 OSPF > IS-IS

» Organized around overlapping
areas

» Area 0 is the core network

23

Different Organizational Structure

) OSPF) 1S-1S

» Organized around overlapping
areas

» Area 0 is the core network

23

Different Organizational Structure

) OSPF) 1S-1S

» Organized around overlapping
areas

» Area 0 is the core network

23

Different Organizational Structure

) OSPF) 1S-1S

» Organized around overlapping * Organized as a 2-level
areas

» Area 0 is the core network

hierarchy

Different Organizational Structure

3 OSPF > IS-IS

» Organized around overlapping * Organized as a 2-level
areas

» Area 0 is the core network

hierarchy

Different Organizational Structure

3 OSPF > IS-IS

» Organized around overlapping * Organized as a 2-level
areas

» Area 0 is the core network

hierarchy

Different Organizational Structure

3 OSPF > IS-IS

» Organized around overlapping '’ Organized as a 2-level
areas

» Area 0 is the core network

hierarchy
» Level 2 is the backbone

Link State vs. Distance Vector

_ Link State Distance Vector

Message Complexity O(n2*e) O(d*n*k)
Time Complexity O(n*log n) O(n)
Convergence Time O(1) O(k)
Robustness ¢ Nodes may advertise * Nodes may advertise
incorrect link costs incorrect path cost
* Each node computes * Errors propagate due to
their own table sharing of DV tables

n = number of nodes in the graph
d = degree of a given node
K = number of rounds

Link State vs. Distance Vector

_ Link State Distance Vector

Message Complexity O(n2*e) O(d*n*k)
Time Complexity O(n*log n) O(n)
Convergence Time O(1) O(k)
Robustness * Nodes may advertise * Nodes may advertise
incorrect link costs incorrect path cost
* Each node computes * Errors propagate due to
their own table sharing of DV tables

* Which is best?
* In practice, it depends.

* In general, link state is more popular.

