Cristina Nita-Rotaru

CS4700/5700: Network fundamentals

Inter-domain routing.

Network Layer, Control Plane

1: BGP

ASs, Revisited

AS Numbers

Each AS identified by an ASN number

- 16-bit values (latest protocol supports 32-bit ones)
- 64512 65535 are reserved
- Currently, there are > 20000 ASNs
 - ► AT&T: 5074, 6341, 7018, ...
 - Sprint: 1239, 1240, 6211, 6242, …
 - Northeastern: 156
 - ▶ North America ASs \rightarrow <u>ftp://ftp.arin.net/info/asn.txt</u>

Inter-Domain Routing

Global connectivity is at stake!

- Thus, all ASs must use the same protocol
- Contrast with intra-domain routing

What are the requirements?

- Scalability
- Flexibility in choosing routes
 - Cost
 - Routing around failures
- Question: link state or distance vector?
 - Trick question: BGP is a path vector protocol

BGP

Border Gateway Protocol

- De facto inter-domain protocol of the Internet
- Policy based routing protocol
- Uses a Bellman-Ford path vector protocol
- Relatively simple protocol, but...
 - Complex, manual configuration
 - Entire world sees advertisements
 - Errors can screw up traffic globally
 - Policies driven by economics
 - How much \$\$\$ does it cost to route along a given path?
 - Not by performance (e.g. shortest paths)

BGP

BGP

Tier-1 ISP Peering

AS-level Topology 2003 Source: CAIDA

-

Peering/Interconnection Wars

Peer

- Reduce upstream costs
- Improve end-to-end performance
- May be the only way to connect to parts of the Internet

- Don't Peer
- You would rather have customers
- Peers are often competitors
- Peering agreements require periodic renegotiation

Peering/Interconnection Wars

Peer

- Reduce upstream costs
- Improve end-to-end performance
- May be the only way to connect to parts of the Internet

- Don't Peer
- You would rather have customers
- Peers are often competitors
- Peering agreements require periodic renegotiation

Peering struggles in the ISP world are extremely contentious, agreements are usually confidential

Question: why do we need iBGP?

- OSPF does not include BGP policy info
- Prevents routing loops within the AS

Question: why do we need iBGP?

- OSPF does not include BGP policy info
- Prevents routing loops within the AS
- iBGP updates do not trigger announcements

Path Vector Protocol

- AS-path: sequence of ASs a route traverses
 - Like distance vector, plus additional information
- Used for loop detection and to apply policy
- Default choice: route with fewest # of ASs

AS 4

BGP Operations (Simplified)

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announce new routes or withdraw previously announced routes.

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announce new routes or withdraw previously announced routes.

announcement = IP prefix + <u>attributes values</u>

BGP Attributes

- Attributes used to select "best" path
 - LocalPref
 - Local preference policy to choose most preferred route
 - Overrides default fewest AS behavior
 - Multi-exit Discriminator (MED)
 - Specifies path for external traffic destined for an internal network
 - Chooses peering point for your network
 - Import Rules
 - What route advertisements do I accept?
 - Export Rules
 - Which routes do I forward to whom?

Route Selection Summary

18

Route Selection Summary

Highest Local Preference

Enforce relationships

Route Selection Summary

Enforce relationships

Shortest AS Path Lowest MED Traf Lowest IGP Cost to BGP Egress

raffic engineering

18

Route Selection Summary

19

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - ► Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

- Customer/provider
- Peer
- Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - ► Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

AS Relationships: It's Complicated

GR Model is strictly hierarchical

- Each AS pair has exactly one relationship
- Each relationship is the same for all prefixes
- In practice it's much more complicated
 - Rise of widespread peering
 - Regional, per-prefix peerings
 - Tier-1's being shoved out by "hypergiants"
 - IXPs dominating traffic volume
- Modeling is very hard, very prone to error
 - Huge potential impact for understanding Internet behavior

Other BGP Attributes

AS_SET

- Instead of a single AS appearing at a slot, it's a set of Ases
- Why?

Communities

- Arbitrary number that is used by neighbors for routing decisions
 - Export this route only in Europe
 - Do not export to your peers
- Usually stripped after first interdomain hop
- Why?

Prepending

- Lengthening the route by adding multiple instances of ASN
- Why?

2: Stable path problem.

Underlying Problem	Distributed Solution
Shortest Paths	RIP, OSPF, IS-IS, etc.
???	BGP

Knowing ??? can:

- Aid in the analysis of BGP policy
- Aid in the design of BGP extensions
- Help explain BGP routing anomalies
- Give us a deeper understanding of the protocol

The Stable Paths Problem

An instance of the SPP:
 Graph of nodes and edges
 Node 0, called the origin

The Stable Paths Problem

- An instance of the SPP:
 Graph of nodes and edges
 Node 0, called the origin
 - A set of permitted paths from each node to the origin
 - Each set contains the null path

The Stable Paths Problem

- An instance of the SPP:
 Graph of nodes and edges
 Node 0, called the origin
 - A set of permitted paths from each node to the origin
 - Each set contains the null path
 - Each set of paths is ranked
 - Null path is always least preferred

- A solution is an assignment of permitted paths to each node such that:
 - Node u's path is either null or uwP, where path wP is assigned to node w and edge u → w exists
 - Each node is assigned the higest ranked path that is consistent with their neighbors

- A solution is an assignment of permitted paths to each node such that:
 - Node u's path is either null or uwP, where path wP is assigned to node w and edge u → w exists
 - Each node is assigned the higest ranked path that is consistent with their neighbors

- A solution is an assignment of permitted paths to each node such that:
 - Node u's path is either null or uwP, where path wP is assigned to node w and edge u → w exists
 - Each node is assigned the higest ranked path that is consistent with their neighbors

- A solution is an assignment of permitted paths to each node such that:
 - Node u's path is either null or uwP, where path wP is assigned to node w and edge u → w exists
 - Each node is assigned the higest ranked path that is consistent with their neighbors

- A solution is an assignment of permitted paths to each node such that:
 - Node u's path is either null or uwP, where path wP is assigned to node w and edge u → w exists
 - Each node is assigned the higest ranked path that is consistent with their neighbors

BGP

BGP

130

- That was only one round of oscillation!
- This keeps going, infinitely
- Problem stems from:
 - Local (not global) decisions
 - Ability of one node to improve its path selection

SPP Explains BGP Divergence

- BGP is not guaranteed to converge to stable routing
 - Policy inconsistencies may lead to "livelock"
 - Protocol oscillation

SPP Explains BGP Divergence

- BGP is not guaranteed to converge to stable routing
 - Policy inconsistencies may lead to "livelock"
 - Protocol oscillation

Beware of Backup Policies

Beware of Backup Policies

Beware of Backup Policies

BGP is not robustIt may not recover from link failure

BGP is Precarious

BGP is Precarious

BGP is Precarious

Unfortunately, SPP is NP-complete

Unfortunately, SPP is NP-complete

Possible Solutions

Dynamic Approach

Extend BGP to detect and suppress policy-based oscillations?

Unfortunately, SPP is NP-complete

Possible Solutions

Static Approach

Dynamic Approach

Extend BGP to detect and suppress policy-based oscillations?

Automated Analysis of Routing Policies (This is very hard) Inter-AS coordination

37

Unfortunately, SPP is NP-complete

Possible Solutions

Static Approach

Dynamic Approach

Extend BGP to detect and suppress policy-based oscillations?

Automated Analysis of Routing Policies (This is very hard)

37

Inter-AS coordination

These approaches are complementary

3: Debugging BGP path problems

Control plane vs. Data Plane

- Control:
 - Make sure that if there's a path available, data is forwarded over it
 - BGP sets up such paths at the AS-level
- Data:
 - For a destination, send packet to most-preferred next hop
 - Routers forward data along IP paths

Control plane vs. Data Plane

- Control:
 - Make sure that if there's a path available, data is forwarded over it
 - BGP sets up such paths at the AS-level
- Data:
 - For a destination, send packet to most-preferred next hop
 - Routers forward data along IP paths
- How does the control plane know if a data path is broken?
 - Direct-neighbor connectivity
 - What if the outage isn't in the direct neighbor?

Why Network Reliability Remains Hard

Visibility

- IP provides no built-in monitoring
- Economic disincentives to share information publicly

Control

- Routing protocols optimize for policy, not reliability
- Outage affecting your traffic may be caused by distant network

 Detecting, isolating and repairing network problems for Internet paths remains largely a slow, manual process

Improving Internet Availability

New Internet design

- Monitoring everywhere in the network
- Visibility into all available routes
- Any operator can impact routes affecting her traffic

Challenges

- What should we monitor?
- What do we do with additional visibility?
- How to use additional control?

A Practical Approach

- We can do this already in today's Internet
 - Crowdsourcing monitoring
 - Use existing protocols/systems in unintended ways
- Allows us to address problems today
 - Also informs future Internet designs

Operators Struggle to Locate Failures

"Traffic attempting to pass through Level3's network in the Washington, DC area is getting lost in the abyss. Here's a trace

from Verizon residential to Level3." Outages mailing list, Dec. 2010

"Traffic attempting to pass through Level3's network in the Washington, DC area is getting lost in the abyss. Here's a trace

from Verizon residential to Level3." 2010 Mailing List User 1

- 1 Home router
- 2 Verizon in Baltimore
- **3 Verizon in Philly**
- 4 Alter.net in DC

Outages mailing list, Dec.

"Traffic attempting to pass through Level3's network in the Washington, DC area is getting lost in the abyss. Here's a trace

from Verizon residential to Level 3," Outages mailing list, Dec. 2010 Mailing List User 1

- 1 Home router
- 2 Verizon in Baltimore
- **3 Verizon in Philly**

4 Alter.net in DC

6 * * * 43 7 * * *

- 1 Home router
- 2 Verizon in DC
- 3 Alter.net in DC
- 4 Level3 in DC
- 5 Level3 in Chicago

Reasons for Long-Lasting Outages

Long-term outages are:

- Repaired over slow, human timescales
- Not well understood
- Caused by routers advertising paths that do not work
 - E.g., corrupted memory on line card causes black hole
 - E.g., bad cross-layer interactions cause failed MPLS tunnel

Key Challenges for Internet Repair

Lack of visibility

- Where is the outage?
- Which networks are (un)affected?
- Who caused the outage?

Lack of control

- Reverse paths determined by possibly distant ASes
- Limited means to affect such paths

Improve availability through:

- Failure isolation and remediation
- Identifying the AS(es) responsible for path changes

Key techniques:

- Visibility
 - Active measurements from distributed vantage points
 - Passive collection of BGP feeds
- Control
 - On-demand BGP prepending to route around outages
 - Active BGP measurements to identify alternative paths

LIFEGUARD: Locating Internet Failures Effectively and Generating Usable Alternate Routes Dynamically

- Locate the ISP / link causing the problem
 - Building blocks
 - Example
 - Description of technique

 Suggest that other ISPs reroute around the problem LIFEGUARD: Locating Internet Failures Effectively and Generating Usable Alternate Routes Dynamically

- Locate the ISP / link causing the problem
 - Building blocks
 - Example
 - Description of technique

 Suggest that other ISPs reroute around the problem

Building blocks for failure isolation

LIFEGUARD can use:

- Ping to test reachability
- Traceroute to measure forward path
- Distributed vantage points (VPs)
 - PlanetLab for our experiments
 - Some can source spoof
- Reverse traceroute to measure reverse path (NSDI '10)
 - I'll teach you about this during the security lecture
- Atlas of historical forward/reverse paths between VPs and targets

- Traceroute yields only path from GMU to target
- Reverse traceroute reveals path asymmetry

- Historical atlas enables reasoning about changes
- Traceroute yields only path from GMU to target
- Reverse traceroute reveals path asymmetry

Historical atlas enables reasoning about changes

- Traceroute yields only path from GMU to target
- Reverse traceroute reveals path asymmetry

50

50

52

BGP

52

52

52

BGP

- Forward path works
- Rostelcom is not forwarding traffic towards GMU

How **LIFEGUARD** Locates Failures

LIFEGUARD:

- 1. Maintains background historical atlas
- 2. Isolates direction of failure, measures working direction
- 3. Tests historical paths in failing direction in order to prune candidate failure locations
- 4. Locates failure as being at the horizon of reachability

Forward path: Choose route that avoids ISP or ISP-ISP link

Reverse path: Want others to choose paths to prefix P that avoid ISP or ISP-ISP link X

- Want a BGP announcement AVOID(X,P):
 - Any ISP with a route to P that avoids X uses such a route
 - Any ISP not using X need only pass on the announcement

LIFEGUARD repairs outages by instructing others to avoid particular routes.

- Q: Do alternative routes exist?
- A: Alternate policy-compliant paths exist in 90% of simulated AVOID(X,P) announcements.
- Simulated 10 million AVOIDs on actual measured routes.

Practical Self-Repair of Reverse Paths

Inter-Domain Routing Summary

- BGP4 is the only inter-domain routing protocol currently in use world-wide
- Issues?
 - Lack of security
 - Ease of misconfiguration
 - Poorly understood interaction between local policies
 - Poor convergence
 - Lack of appropriate information hiding
 - Non-determinism
 - Poor overload behavior

Lots of research into how to fix this

- Security
 - BGPSEC, RPKI
- Misconfigurations, inflexible policy
 - SDN
- Policy Interactions
 - PoiRoot (root cause analysis)
- Convergence
 - Consensus Routing
- Inconsistent behavior
 - LIFEGUARD, among others

Why are these still issues?

- Backward compatibility
- Buy-in / incentives for operators
- Stubbornness

Why are these still issues?

- Backward compatibility
- Buy-in / incentives for operators
- Stubbornness

Very similar issues to IPv6 deployment