
Cristina Nita-Rotaru

CS4700/5700: Network
fundamentals

Bridging.

1: Bridging

Bridging

Just Above the Data Link Layer

! Bridging
! How do we connect LANs?

! Function:
! Route packets between LANs

! Key challenges:
! Plug-and-play, self configuration
! How to resolve loops

Application
Presentation

Session
Transport
Network

Data Link
Physical

3

Bridging

Recap

! Originally, Ethernet was a broadcast technology

Tee Connector

Terminator

R
ep

ea
te

r

4

Bridging

Recap

! Originally, Ethernet was a broadcast technology

Tee Connector

Terminator

R
ep

ea
te

r

4

Bridging

Recap

! Originally, Ethernet was a broadcast technology

Tee Connector

Terminator

Hub

R
ep

ea
te

r

4

Bridging

Pros: Simplicity
! Hardware is stupid and cheap
Cons: No scalability
! More hosts = more collisions = pandemonium

Recap

! Originally, Ethernet was a broadcast technology

Tee Connector

Terminator

Hub

R
ep

ea
te

r

4

Bridging

The Case for Bridging

! Need a device that can bridge different LANs
! Only forward packets to intended recipients
! No broadcast!

Hub

A

C

B

5

Bridging

The Case for Bridging

! Need a device that can bridge different LANs
! Only forward packets to intended recipients
! No broadcast!

Hub

A

C

B

Send Packet
B ! C

5

Bridging

The Case for Bridging

! Need a device that can bridge different LANs
! Only forward packets to intended recipients
! No broadcast!

Hub

A

C

B

Send Packet
B ! C

5

Bridging

The Case for Bridging

! Need a device that can bridge different LANs
! Only forward packets to intended recipients
! No broadcast!

Hub

A

C

B

A

C

B

Send Packet
B ! C

Bridge

5

Bridging

The Case for Bridging

! Need a device that can bridge different LANs
! Only forward packets to intended recipients
! No broadcast!

Hub

A

C

B

A

C

B

Send Packet
B ! C

Send Packet
B ! C

Bridge

5

Bridging

The Case for Bridging

! Need a device that can bridge different LANs
! Only forward packets to intended recipients
! No broadcast!

Hub

A

C

B

A

C

B

Send Packet
B ! C

Send Packet
B ! C

Bridge

5

Bridging

Bridging the LANs

! Bridging limits the size of collision domains
! Vastly improves scalability?

! Tradeoff: bridges are more complex than hubs
! Physical layer device vs. data link layer device
! Need memory buffers, packet processing hardware, routing

tables

Hub

Hub

6

Bridging

Bridging the LANs

! Bridging limits the size of collision domains
! Vastly improves scalability?

! Tradeoff: bridges are more complex than hubs
! Physical layer device vs. data link layer device
! Need memory buffers, packet processing hardware, routing

tables

Hub

Hub

6

Bridging

Bridging the LANs

! Bridging limits the size of collision domains
! Vastly improves scalability?

! Tradeoff: bridges are more complex than hubs
! Physical layer device vs. data link layer device
! Need memory buffers, packet processing hardware, routing

tables

Hub

Hub

6

Bridging

Bridge Internals

! Bridges have memory buffers to queue packets
! Bridge is intelligent, only forwards packets to the correct

output
! Bridges are high performance, full N x line rate is possible

Switch
Fabric

Inputs Outputs
Bridge

7

Bridging

Bridge Internals

! Bridges have memory buffers to queue packets
! Bridge is intelligent, only forwards packets to the correct

output
! Bridges are high performance, full N x line rate is possible

Switch
Fabric

Inputs Outputs
Bridge

Memory buffer

7

Bridging

Bridge Internals

! Bridges have memory buffers to queue packets
! Bridge is intelligent, only forwards packets to the correct

output
! Bridges are high performance, full N x line rate is possible

Switch
Fabric

Inputs Outputs
Bridge

Makes routing
decisions

7

Bridging

Bridge Internals

! Bridges have memory buffers to queue packets
! Bridge is intelligent, only forwards packets to the correct

output
! Bridges are high performance, full N x line rate is possible

Switch
Fabric

Inputs Outputs
Bridge

7

Bridging

Bridge Internals

! Bridges have memory buffers to queue packets
! Bridge is intelligent, only forwards packets to the correct

output
! Bridges are high performance, full N x line rate is possible

Switch
Fabric

Inputs Outputs
Bridge Hub

7

Bridging

Bridge Internals

! Bridges have memory buffers to queue packets
! Bridge is intelligent, only forwards packets to the correct

output
! Bridges are high performance, full N x line rate is possible

Switch
Fabric

Inputs Outputs
Bridge Hub

7

Bridging

Bridges

! Original form of Ethernet switch
! Connect multiple IEEE 802 LANs at layer 2
! Goals

! Reduce the collision domain
! Complete transparency

! “Plug-and-play,” self-configuring
! No hardware of software changes on hosts/hubs
! Should not impact existing LAN operations

Hub
8

Bridging

Next

! Forwarding of frames
! Learning of (MAC) Addresses
! Spanning Tree Algorithm (to handle loops)

9

Bridging

Frame Forwarding Tables

! Each bridge maintains a forwarding table

MAC Address Port Age
00:00:00:00:00:AA 1 1 minute
00:00:00:00:00:BB 2 7 minutes
00:00:00:00:00:CC 3 2 seconds

10

Bridging

Frame Forwarding Tables

! Each bridge maintains a forwarding table

MAC Address Port Age
00:00:00:00:00:AA 1 1 minute
00:00:00:00:00:BB 2 7 minutes
00:00:00:00:00:CC 3 2 seconds

10

Bridging

Frame Forwarding Tables

! Each bridge maintains a forwarding table

MAC Address Port Age
00:00:00:00:00:AA 1 1 minute
00:00:00:00:00:BB 2 7 minutes
00:00:00:00:00:CC 3 2 seconds

10

Bridging

00:00:00:00:00:DD 1 3 minutes

Frame Forwarding Tables

! Each bridge maintains a forwarding table

MAC Address Port Age
00:00:00:00:00:AA 1 1 minute
00:00:00:00:00:BB 2 7 minutes
00:00:00:00:00:CC 3 2 seconds

10

Bridging

00:00:00:00:00:DD 1 3 minutes

Frame Forwarding Tables

! Each bridge maintains a forwarding table

MAC Address Port Age
00:00:00:00:00:AA 1 1 minute
00:00:00:00:00:BB 2 7 minutes
00:00:00:00:00:CC 3 2 seconds

10

Bridging

Frame Forwarding in Action

! Assume a frame arrives on port 1
! If the destination MAC address is in the forwarding table,

send the frame on the correct output port
! If the destination MAC isn’t in the forwarding table,

broadcast the frame on all ports except 1

Port 1

Port 3

Port 2Port 4

11

Bridging

Frame Forwarding in Action

! Assume a frame arrives on port 1
! If the destination MAC address is in the forwarding table,

send the frame on the correct output port
! If the destination MAC isn’t in the forwarding table,

broadcast the frame on all ports except 1

Port 1

Port 3

Port 2Port 4

11

Bridging

Frame Forwarding in Action

! Assume a frame arrives on port 1
! If the destination MAC address is in the forwarding table,

send the frame on the correct output port
! If the destination MAC isn’t in the forwarding table,

broadcast the frame on all ports except 1

Port 1

Port 3

Port 2Port 4

11

Bridging

Frame Forwarding in Action

! Assume a frame arrives on port 1
! If the destination MAC address is in the forwarding table,

send the frame on the correct output port
! If the destination MAC isn’t in the forwarding table,

broadcast the frame on all ports except 1

Port 1

Port 3

Port 2Port 4

11

Bridging

Frame Forwarding in Action

! Assume a frame arrives on port 1
! If the destination MAC address is in the forwarding table,

send the frame on the correct output port
! If the destination MAC isn’t in the forwarding table,

broadcast the frame on all ports except 1

Port 1

Port 3

Port 2Port 4

11

Bridging

Learning Addresses

! Manual configuration is
possible, but…
! Time consuming
! Error prone
! Not flexible (add/

remove hosts)

12 Hub

00:00:00:00:00:AA

00:00:00:00:00:BB
Port 1 Port 2

Instead, learn addresses
using a simple heuristic

• Look at the source of
frames that arrive on each
port

12

Bridging

Learning Addresses

! Manual configuration is
possible, but…
! Time consuming
! Error prone
! Not flexible (add/

remove hosts)

12 Hub

00:00:00:00:00:AA

00:00:00:00:00:BB
Port 1 Port 2

Instead, learn addresses
using a simple heuristic

• Look at the source of
frames that arrive on each
port

12

Bridging

Learning Addresses

! Manual configuration is
possible, but…
! Time consuming
! Error prone
! Not flexible (add/

remove hosts)

12 Hub

00:00:00:00:00:AA

00:00:00:00:00:BB
Port 1 Port 2

MAC Address Port Age
00:00:00:00:00:AA 1 0 minutes

Instead, learn addresses
using a simple heuristic

• Look at the source of
frames that arrive on each
port

12

Bridging

Learning Addresses

! Manual configuration is
possible, but…
! Time consuming
! Error prone
! Not flexible (add/

remove hosts)

12 Hub

00:00:00:00:00:AA

00:00:00:00:00:BB
Port 1 Port 2

00:00:00:00:00:BB 2 0 minutes

MAC Address Port Age
00:00:00:00:00:AA 1 0 minutes

Instead, learn addresses
using a simple heuristic

• Look at the source of
frames that arrive on each
port

12

Bridging

Learning Addresses

! Manual configuration is
possible, but…
! Time consuming
! Error prone
! Not flexible (add/

remove hosts)

12 Hub

00:00:00:00:00:AA

00:00:00:00:00:BB
Port 1 Port 2

00:00:00:00:00:BB 2 0 minutes

MAC Address Port Age
00:00:00:00:00:AA 1 0 minutes

Delete old entries after a timeout

Instead, learn addresses
using a simple heuristic

• Look at the source of
frames that arrive on each
port

12

Bridging

Complicated Learning Example

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>
! <Src=EE, Dest=CC>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>
! <Src=EE, Dest=CC>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1

EE 2

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>
! <Src=EE, Dest=CC>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1
EE 2 EE 2

Bridge 1 Bridge 2

13

Bridging

Complicated Learning Example

! <Src=AA, Dest=FF>
! <Src=CC, Dest=AA>
! <Src=EE, Dest=CC>

FFEEDDCCBBAA

Port 1 Port 2 Port 1 Port 2

HubHubHub

AA 1 AA 1
CC 2 CC 1
EE 2 EE 2

Bridge 1 Bridge 2

13

3: Spanning tree.

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2

BB

CC DD

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2

BB

CC DD

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2
AA 1

AA 1

BB

CC DD

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2
AA 1

AA 1

BB

CC DD

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2
AA 1

AA 1

BB

CC DD

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2
AA 1

AA 1

BB

CC DD

AA 2
AA 2

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2
AA 1

AA 1

BB

CC DD

AA 2
AA 2

15

Bridging

The Danger of Loops

! <Src=AA, Dest=DD>
! This continues to infinity

! How do we stop this?
! Remove loops from the

topology
! Without physically

unplugging cables
! 802.1 uses an algorithm

to build and maintain a
spanning tree for
routing

AA

Port 1

Hub

Port 1

Hub

Port 2 Port 2
AA 1

AA 1

BB

CC DD

AA 2
AA 2AA 1 AA 1

15

Bridging

Spanning Tree Definition

! A subset of edges in a graph that:
! Span all nodes
! Do not create any cycles

! This structure is a tree

1

4

2

5

6

3

716

Bridging

Spanning Tree Definition

! A subset of edges in a graph that:
! Span all nodes
! Do not create any cycles

! This structure is a tree

1

4

2

5

6

3

7

1

4

16

Bridging

Spanning Tree Definition

! A subset of edges in a graph that:
! Span all nodes
! Do not create any cycles

! This structure is a tree

1

4

2

5

6

3

7

1

4
5

16

Bridging

Spanning Tree Definition

! A subset of edges in a graph that:
! Span all nodes
! Do not create any cycles

! This structure is a tree

1

4

2

5

6

3

7

1

4

2

5

616

Bridging

Spanning Tree Definition

! A subset of edges in a graph that:
! Span all nodes
! Do not create any cycles

! This structure is a tree

1

4

2

5

6

3

7

1

4

2

5

6

3

716

Bridging

Spanning Tree Definition

! A subset of edges in a graph that:
! Span all nodes
! Do not create any cycles

! This structure is a tree

1

4

2

5

6

3

7

1

4

2

5

6

3

7

5

1

4 26

3

7
16

Bridging

Spanning Tree Poem

Algorhyme

 I think that I shall never see
 a graph more lovely than a tree.
 A tree whose crucial property
 is loop-free connectivity.
 A tree that must be sure to span
 so packet can reach every LAN.
 First, the root must be selected.
 By ID, it is elected.
 Least-cost paths from root are traced.
 In the tree, these paths are placed.
 A mesh is made by folks like me,
 then bridges find a spanning tree.

 Radia Perlman

17

Bridging

802.1 Spanning Tree Approach

1. Elect a bridge to be the root of the tree
2. Every bridge finds shortest path to the root
3. Union of these paths becomes the spanning tree

! Bridges exchange Configuration Bridge Protocol Data
Units (BPDUs) to build the tree
! Used to elect the root bridge
! Calculate shortest paths
! Locate the next hop closest to the root, and its port
! Select ports to be included in the spanning trees

18

Bridging

Definitions

! Bridge ID (BID) = <Random Number>
! Root Bridge: bridge with the lowest BID in the tree
! Path Cost: cost (in hops) from a transmitting bridge to

the root
! Each port on a bridge has a unique Port ID
! Root Port: port that forwards to the root on each

bridge
! Designated Bridge: the bridge on a LAN that provides

the minimal cost path to the root
! The designated bridge on each LAN is unique

19

Bridging

Determining the Root

! Initially, all hosts assume they are the root
! Bridges broadcast BPDUs:

! Based on received BPDUs, each switch chooses:
! A new root (smallest known Root ID)
! A new root port (what interface goes towards the root)
! A new designated bridge (who is the next hop to root)

Root ID Path Cost to Root Bridge ID

20

Bridging

Comparing BPDUs

if R1 < R2: use BPDU1
else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

use BPDU1
else: use BPDU2

R1 Cost1 B1 R2 Cost2 B2

BPDU1 BPDU2

21

Bridging

Comparing BPDUs

if R1 < R2: use BPDU1
else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

use BPDU1
else: use BPDU2

R1 Cost1 B1 R2 Cost2 B2

BPDU1 BPDU2

21

Bridging

Comparing BPDUs

if R1 < R2: use BPDU1
else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

use BPDU1
else: use BPDU2

R1 Cost1 B1 R2 Cost2 B2

BPDU1 BPDU2

21

Bridging

Comparing BPDUs

if R1 < R2: use BPDU1
else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

use BPDU1
else: use BPDU2

R1 Cost1 B1 R2 Cost2 B2

BPDU1 BPDU2

21

Bridging

Comparing BPDUs

if R1 < R2: use BPDU1
else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

use BPDU1
else: use BPDU2

R1 Cost1 B1 R2 Cost2 B2

BPDU1 BPDU2

21

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

41: 3/1

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

41: 3/1

68: 9/1

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

41: 3/1

68: 9/168: 3/29: 3/2

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

41: 3/1

68: 9/1

41: 0/2

3: 0/2

68: 3/29: 3/2

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

41: 3/1

68: 9/1

41: 0/2

3: 0/2

68: 3/29: 3/2 68: 0/39: 0/3

22

Bridging

Spanning Tree Construction

0: 0/0 12: 12/0 3: 3/0

27: 27/0 41: 41/0

9: 9/0 68: 68/0

27: 0/1

12: 0/1

41: 3/1

68: 9/1

41: 0/2

3: 0/2

68: 3/29: 3/2 68: 0/39: 0/3

22

2: Switches

Bridging

Bridges vs. Switches

! Bridges make it possible to increase LAN capacity
! Reduces the amount of broadcast packets
! No loops

! Switch is a special case of a bridge
! Each port is connected to a single host

! Either a client machine
! Or another switch

! Links are full duplex
! Simplified hardware: no need for CSMA/CD!
! Can have different speeds on each port

24

Bridging

Switching the Internet

! Capabilities of switches:
! Network-wide routing based on MAC addresses
! Learn routes to new hosts automatically
! Resolve loops

25

Bridging

Switching the Internet

! Capabilities of switches:
! Network-wide routing based on MAC addresses
! Learn routes to new hosts automatically
! Resolve loops

! Could the whole Internet be one switching domain?

25

Bridging

Switching the Internet

! Capabilities of switches:
! Network-wide routing based on MAC addresses
! Learn routes to new hosts automatically
! Resolve loops

! Could the whole Internet be one switching domain?

NO

25

Bridging

Limitations of MAC Routing

! Inefficient
! Flooding packets to locate unknown hosts

26

Bridging

Limitations of MAC Routing

! Inefficient
! Flooding packets to locate unknown hosts

! Poor Performance
! Spanning tree does not balance load
! Hot spots

26

Bridging

Limitations of MAC Routing

! Inefficient
! Flooding packets to locate unknown hosts

! Poor Performance
! Spanning tree does not balance load
! Hot spots

! Extremely Poor Scalability
! Every switch needs every MAC address on the Internet in

its routing table!

26

Bridging

Limitations of MAC Routing

! Inefficient
! Flooding packets to locate unknown hosts

! Poor Performance
! Spanning tree does not balance load
! Hot spots

! Extremely Poor Scalability
! Every switch needs every MAC address on the Internet in

its routing table!
IP addresses these problems (next week…)

26

Bridging

Summary

! Bridges connect multiple LANs
at layer 2

! Routing is based on MAC
addresses

! MAC addresses are learned
automatically

! Spanning tree is used to avoid
loops

27

