
Cristina Nita-Rotaru

CS670: Network security

IPsec. TLS.

Sources

IPSec; TLS 2

1.  Many slides courtesy of Christo Wilson and Wil
Robertson

2.  IPSec Key management based on slides from B.
LaMacchia

3.  Analysis of the HTTPS Certificate Ecosystem, IMC 2013:
https://jhalderm.com/pub/papers/https-imc13.pdf

4.  Analysis of SSL certificate reissues and revocations in the
wake of Heartbleed, IMC 2014:
http://www.ccs.neu.edu/home/cbw/pdf/imc254-zhang.pdf

1: Protecting IP: IPsec

OSI/ISO Model

IPSec; TLS 4

Network

Transport

Session

Physical Layer

Data Link

Application

Presentation

Network

Transport

Session

Physical Layer

Data Link

Application

Presentation

IPsec design goals

}  Design philosophy: applications cannot be trusted to
implement end-to-end security properly and security
should be built into the network itself
}  Transparent to applications (below transport layer)

}  Goal: Facilitate direct IP connectivity between sensitive
hosts through untrusted networks

}  It is designed to be extremely flexible
}  Different crypto algorithms and key exchange supported
}  Different security services compositions
}  Different granularities of protection

IPSec; TLS 5

Security goals

}  IPsec provides:
}  access control
}  integrity
}  data origin authentication
}  rejection of replayed packets
}  confidentiality

}  IETF IPSEC Working Group
}  Documented in RFCs and Internet drafts

IPSec; TLS 6

Security and deployment mechanisms

}  Operates based on security associations
}  Deployment:

}  Transport-mode: encapsulates an upper-layer protocol (e.g.
TCP or UDP) and preapends an IP header in clear

}  Tunnel-mode: encapsulates an entire IP datagram into a new
packet adding a new IP header

}  Security:
}  Authentication Header (AH): provides integrity and

authentication without confidentiality
}  Encapsulating Security Payload (ESP): provides confidentiality

and can also provide integrity and authentication

IPSec; TLS 7

Security associations (SA)

}  A relationship between a sender and a receiver
}  Identified by three parameters:

}  Security Parameter Index (SPI)
}  IP Destination address (IP of the destination SA, can be a host,

a firewall or a router)
}  Security Protocol Identifier (ESP or AH)

}  SPI + IP destination address uniquely identifies a particular
Security Association

}  SAs are unidirectional, sender supplies SPI to receiver

IPSec; TLS 8

Parameters of a security association

}  Sequence number counter: used to generate a sequence
number in headers

}  Sequence counter overflow: if sequence counter overflow
should generate an auditable event and prevent further
transmission of packets on this SA

}  Anti-replay window: used to determine if an inbound packet is
a replay

}  AH information: auth. keys, key lifetime
}  ESP information:encryption, auth., key, key lifetime, initial values
}  Lifetime of the Security Association
}  Protocol Mode: tunnel, transport

IPSec; TLS 9

Transport mode

}  ESP in Transport Mode: encrypts and optionally
authenticates the IP payload (data), but not the IP
header.

}  AH in Transport Mode: authenticates the IP payload and
selected portions of the IP header.

IPSec; TLS 10

Transport mode

IPSec; TLS 11

AS 1
AS 2

The end hosts
must implement

IPsec

The network is
oblivious to

IPsec

Tunnel mode

}  ESP in Tunnel Mode: encrypts and optionally
authenticates the entire inner IP packet, including the
inner IP header.

}  AH in Tunnel Mode: authenticates the entire inner IP
packet and selected portions of the outer IP header.

IPSec; TLS 12

Tunnel mode

IPSec; TLS 13

AS 1
AS 2

End hosts are
oblivious to IPsec

The routers establish
an IPsec tunnel,

encapsulate
datagrams

Tunnel vs transport: packets

IPSec; TLS 14

IP header

IP header

IP header

TCP header

TCP header

TCP header

data

data

data

IPsec header

IPsec header IP header

Original

Transport
mode

Tunnel
mode

IPsec headers

}  Authentication Header (AH) – IP protocol #51
}  Protects integrity of the IP header and payload data
}  Provides data origin authentication
}  Protection against replay attacks

}  Encapsulating Security Payloads (ESP) – IP protocol #50
}  Can be used in encryption+authentication or just

authentication mode
}  Protects integrity (and confidentiality) of payload data (but not

the IP header)
}  Provides data origin authentication
}  Protection against replay attacks

IPSec; TLS 15

Authentication header

}  Provides support for data integrity and authentication
(MAC) of IP packets, using HMAC based on MD5 or SHA1.

}  Defends against replay attacks (sequence number).

IPSec; TLS 16

AH: Preventing replay

}  When a SA is established, sender initializes sequence counter
to 0. Window size min 32 packets, preferred 64..

}  Every time a packet is sent the counter is incremented and is
set in the sequnce number in the AH header.

}  When sequence number 232 - 1 is reached, a new SA should
be negociated.

IPSec; TLS 17

AH authentication

IPSec; TLS 18

Transport

Tunnel

The new IP header contains different IP
addresses than the ultimate destination and
source

Encapsulating Security Payload

}  ESP provides confidentiality services, optionally can provide the same
services as AH

}  Encryption: 3DES, Blowfish, CAST, IDEA, 3IDEA

IPSec; TLS 19

ESP encryption and authentication:

IPSec; TLS 20

Transport

Tunnel

Transport

IPSec; TLS 21

Tunnel

IPSec; TLS 22

Cryptographic algorithms

}  Encryption:
}  TripleDES-CBC
}  AES-CBC
}  AES-GCM: authentication and confidentiality

}  Authentication:
HMAC-SHA1

http://tools.ietf.org/html/rfc7321, August 2014

IPSec; TLS 23

IPsec key management

}  Goal: setting up SA and keys between pairs of
communicating hosts

}  Manual: system adminstrator configures the keys for hosts
}  Automated: on-demand creation of keys

}  Oakley Key Determination Protocol (based on Diffie-Hellman):
authenticated, prevents replays, negociates global parameters

}  Internet Security Association and Key Management Protocol
(ISAKMP): Internet key management and negociation, defines
procedures and packet formats to establish, negotiate, update, and
destroy SAs

}  IKE: Resynchronize two ends of an IPsec SA: Choose
cryptographic keys; Reset sequence numbers to zero;
Authenticate endpoints

IPSec; TLS 24

Alice Bob
gA mod p, nonceA

{“Alice”, proof I’m Alice}gAB mod p

gB mod p, nonceB

{“Bob”, proof I’m Bob}gAB mod p

General idea of IKEv2

IPSec; TLS 25

IKEv2, RFC 4306

A → B : (ga mod p, Na)
B → A : (gb mod p, Nb)

K = f(gab mod p, Na, Nb)
3. A → B : {SignK(A,SignA(M1,M2), gc mod p, Na2) }K

4. B → A : {SignK(B,SignB(M1,M2), gd mod p, Nb2) }K

First session key = f(gcd mod p, Na2, Nb2)

IPSec; TLS 26

IKE contenders

}  Photuris: Signed Diffie-Hellman, stateless cookies, optional
hiding endpoint IDs

}  SKIP: Diffie-Hellman public keys, so if you know
someone’s public key gB, you automatically know a shared
secret gAB. Each msg starts with per-msg key S encrypted
with gAB

}  ISAKMP: “framework”, not a protocol. Complex
encodings. Flexible yet constraining.
}  Phase 1 expensive, establishes a session key with which to

negotiate multiple phase 2 sessions

IPSec; TLS 27

IKE

}  IKE session runs in user space, i.e. over the UDP protocol
}  UDP is best effort, no reliability or ordering
}  The standard specifies:

}  retransmissions
}  timeouts
}  concurrent exchanges
}  synchronization
}  protection of the messages pertaining to the key establishment
}  use of digital certificates

IPSec; TLS 28

Why isn’t IPsec deployed?

}  Extremely complex to set up
}  ISAKMP, IKEv2, IPsec... Too many protocols!
}  >34 different RFCs!

}  Bad interactions between NAT and IPsec ESP
}  How can the NAT route packets if the TCP header is

encrypted?

}  Application-level security is easier to setup and deploy
incrementally
}  No need for OS or network-level support
}  Easy usually wins vs. better :(

IPSec; TLS 29

2: VPNs

What’s a VPN

}  A VPN is a virtual network built on top of existing physical
networks that can provide a secure communications:
}  data protection, including confidentiality, integrity
}  data origin authentication
}  replay protection
}  access control.

}  VPNs are used most often to protect communications carried
over public networks such as the Internet

}  VPNs can reduce the risks of networking, but they cannot
totally eliminate them

}  The most common way to achieve a VPN is using IPsec

IPSec; TLS 31

Models for VPN architectures

}  Gateway-to-gateway: protects communications between
two specific networks
}  Example: main office network and a branch office network

}  Host-to-gateway: protects communications between one or
more individual hosts and a specific network belonging to an
organization.
}  Example: traveling employees and telecommuters, to gain access to

internal organizational services, email, web server, etc

}  Host-to-host: protects communication between two specific
computers.
}  Example: small number of users need to use or administer a remote

system that requires the use of inherently insecure protocols.

IPSec; TLS 32

NIST recommendations for VPN IPSec

}  If any of the information that will traverse a VPN should not be
seen by non-VPN users, then the VPN must provide
confidentiality protection (encryption) for that information.

}  A VPN must use a FIPS-approved encryption algorithm. AES-
CBC (AES in Cipher Block Chaining mode) with a 128-bit key
is highly recommended; Triple DES (3DES-CBC) is also
acceptable. The Data Encryption Standard (DES) is also an
encryption algorithm; since it has been successfully attacked, it
should not be used.

IPSec; TLS 33

NIST recommendations for VPN IPSec

}  A VPN must always provide integrity protection.
}  A VPN must use a FIPS-approved integrity protection

algorithm. HMAC-SHA-1 is highly recommended. HMAC-MD5
also provides integrity protection, but it is not a FIPS-approved

}  algorithm.
}  A VPN should provide replay protection.

IPSec; TLS 34

NIST recommendations for VPN IPSec

}  For IKEv1, IKE Security Associations (SAs) should have a
lifetime no greater than 24 hours (86400 seconds) and IPsec
SAs should have a lifetime no greater than 8 hours (28800
seconds).

}  For IKEv2, IKE SAs should be re-keyed after at most 24 hours
and child SAs should be re-keyed after at most 8 hours.

IPSec; TLS 35

NIST recommendations for VPN IPSec

}  The Diffie-Hellman (DH) group used to establish the secret
keying material for IKE and IPsec should be consistent with
current security requirements. DH group 2 (1024-bit MODP)
should be used for Triple DES and for AES with a 128-bit key.
For greater security, DH group 5 (1536-bit MODP) or DH
group 14 (2048-bit MODP) may be used for AES.

}  The larger DH groups will result in increased processing time.

IPSec; TLS 36

What is NIST

}  The National Institute of Standards and Technology (NIST),
known between 1901 and 1988 as the National Bureau of
Standards (NBS), is a measurement standards laboratory, also
known as a National Metrological Institute (NMI), which is a
non-regulatory agency of the United States Department of
Commerce.

}  Computer Security division: standards and recommendations.
}  Federal Information Processing Standards (FIPS) Publications are

standards issued by NIST

 http://csrc.nist.gov/publications/PubsFIPS.html
}  SP - Special Publications,

IPSec; TLS 37

Implementations

}  Lots of products
}  VPN is the most common form
}  Open source: OpenSwan, strong Swan

IPSec; TLS 38

Take home lessons

}  IPSec does not trust applications to
implement security

}  IPSec provides: authentication,
confidentiality, integrity, anti-replay at IP
layer

}  Based on concept od security associations,
unidirectional index selected by sender

}  Two type of services; AH and ESP
}  Two deployment modes: tunnel and

transport
}  Flexible and complex

IPSec; TLS 39

2: SSL/TLS

What is Transport Layer Security (TLS)

}  Protocol that allows to establish an end-to-end secure
channel, providing: confidentiality, integrity and authentication

}  Defines how the characteristics of the channel are negotiated:
key establishment, encryption cipher, authentication
mechanism

}  Requires reliable end-to-end protocol, so it runs on top of
TCP

}  It can be used by other session protocols (such as HTTPS)
}  Several implementations: for example SSLeay, open source

implementation (www.openssl.org)

IPSec; TLS 41

TLS vs. IPSEC

}  Security goals are similar
}  IPSec more flexible in services it provides, decouples

authentication from encryption
}  Different granularity: IPSec operates between hosts, TLS

between processes
}  Performance vs granularity

IPSec; TLS 42

TLS goals

}  Confidentiality: Achieved by encryption
}  Integrity: Achieved by computing a MAC and send it

with the message;
}  Key exchange: relies on public key encryption

}  Several version algorithms changed with versions;
}  TLS 1.2:

}  Replaced the use of MD5-SHA1 with SHA-256
}  AES, CCM and GCM modes

}  TLS 1.3, draft
}  https://tools.ietf.org/html/draft-ietf-tls-rfc5246-bis-00

IPSec; TLS 43

TLS: Protocol architecture

IPSec; TLS 44

}2 layers
protocol

Session and connection

}  Session:
}  association between a client and a server;
}  created by the Handshake Protocol;
}  defines secure cryptographic parameters that can be shared by

multiple connections.

}  Connection:
}  end-to-end reliable secure communication;
}  every connection is associated with a session.

IPSec; TLS 45

Session

}  Session identifier: generated by the server to identify an
active or resumable session.

}  Peer certificate: X 509v3 certificate.
}  Compression method: algorithm used to compress the

data before encryption.
}  Cipher spec: encryption and hash algorithm, including

hash size.
}  Master secret: 48 byte secret shared between the client

and server.
}  Is resumable: indicates if the session can be used to

initiate new connections.

IPSec; TLS 46

Connection

}  Server and client random: chosen for each connection.
}  Server write MAC secret: shared key used to compute

MAC on data sent by the server.
}  Client write MAC secret: same as above for the client
}  Server write key: shared key used by encryption when

server sends data.
}  Client write key: same as above for the client.
}  Initialization vector: initialization vectors required by

encryption.
}  Sequence numbers: both server and client maintains

such a counter to prevent replay, cycle is 264 - 1.

IPSec; TLS 47

TLS: SSL Record Protocol

}  Provides confidentiality and message integrity using shared keys established
by the Handshake Protocol

IPSec; TLS 48

Alert Protocol

}  Used to send TLS related alerts to peers
}  Alert messages are compressed and encrypted
}  Message: two bytes, one defines fatal/warnings, other

defines the code of alert
}  Fatal errors: decryption_failed, record_overflow,

unknown_ca, access_denied, decode_error,
export_restriction, protocol_version, insufficient_security,
internal_error

}  Other errors: decrypt_error, user_cancelled,
no_renegotiation

IPSec; TLS 49

TLS: Handshake Protocol

}  Negotiate Cipher-Suite Algorithms
}  Symmetric cipher to use
}  Key exchange method
}  Message digest function

}  Establish the shared master secret
}  Optionally authenticate server and/or

client

IPSec; TLS 50

TLS Handshake

BofA
ClientHello(Version, Prefs, Noncec)

ServerHello(Version, Prefs, Nonces)

Certificates({CBofA, CVerisign})

ServerHelloDone

ClientKeyExchange({PreMasterKey}PBofA)

ChangeCipherSpec

{Finished}K

ChangeCipherSpec

{Finished}K

Certificate
chain

Encrypted using
server’s public

key

Encrypted using
symmetric session

key

Both sides
derive

symmetric
session key K

from the
PreMasterKey

SBofA

IPSec; TLS 51

Handshake Protocol: Hello

}  Client_hello_message has the following parameters:
}  Version
}  Random: timestamp + 28-bytes random
}  Session ID
}  CipherSuite: cipher algorithms supported by the client,

first is key exchange
}  Compression method

}  Server responds with the same
}  Client may request use of cached session

}  Server chooses whether to accept or not

IPSec; TLS 52

Supported key exchange

}  RSA:
}  shared key encrypted with RSA public key

}  Fixed Diffie-Hellman:
}  public parameters provided in a certificate

}  Ephemeral Diffie-Hellman:
}  the best; Diffie-Hellman with temporary secret key, messages

signed using RSA or DSS
}  Anonymous Diffie-Hellman:

}  vulnerable to man-in-the-middle

IPSec; TLS 53

TLS: Authentication

}  Verify identities of participants
}  Client authentication is optional
}  Certificate is used to associate identity with

public key and other attributes, more about this
later

IPSec; TLS 54

A
Certificate

B

Certificate

TLS: Change Cipher Spec/Finished

}  Change Cipher Spec completes the setup of the
connections.

}  Announce switch to negotiated algorithms and values
}  The client sends a message under the new algorithms,

allows verification of that the handshake was successful.

IPSec; TLS 55

TLS requires digital certificates

}  You need a certificate. How do you get one?
}  Option 1: generate a certificate yourself

}  Use openssl to generate a new asymmetric keypair
}  Use openssl to generate a certificate that includes your new

public key
}  Drawback:

}  Your new cert is self-signed, i.e. not signed by a trusted CA
}  Browsers cannot validate that the cert is trustworthy

}  Option 2:
}  Pay a well-known CA to sign your certificate
}  Any browser that trusts the CA will also trust your new cert

IPSec; TLS 56

Certificate authorities (CA)

}  CAs are the roots of trust in the TLS PKI
}  Symantec, Verisign, Thawte, Geotrust, Comodo, GlobalSign,

Go Daddy, Digicert, Entrust, and hundreds of others
}  Issue signed certs on behalf of third-parties

}  How do you become a CA?
1.  Create a self-signed root certificate
2.  Get all the major browser vendors to include your cert

with their software
3.  Keep your private key secret at all costs

}  What is the key responsibility of being a CA?
}  Verify that someone buying a cert for example.com actually

controls example.com
IPSec; TLS 57

X.509 Certificate (Part 1)

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 0c:00:93:10:d2:06:db:e3:37:55:35:80:11:8d:dc:87
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert SHA2
Extended Validation Server CA
 Validity
 Not Before: Apr 8 00:00:00 2014 GMT
 Not After : Apr 12 12:00:00 2016 GMT
 Subject: businessCategory=Private Organization/1.3.6.1.4.1.311.60.2.1.3=US/
1.3.6.1.4.1.311.60.2.1.2=Delaware/serialNumber=5157550/street=548 4th Street/
postalCode=94107, C=US, ST=California, L=San Francisco, O=GitHub, Inc.,
CN=github.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b1:d4:dc:3c:af:fd:f3:4e:ed:c1:67:ad:e6:cb:

Issuer: who generated
this cert? (usually a

CA)

Certificates
expire

Used for
revocation

•  Subject: who owns this cert?
•  This is Github’s certificate
•  Must be served from

github.com

Github’s public
key

IPSec; TLS 58

X.509 Certificate (Part 2)

 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:github.com, DNS:www.github.com
 X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl3.digicert.com/sha2-ev-server-g1.crl
 Full Name:
 URI:http://crl4.digicert.com/sha2-ev-server-g1.crl
 X509v3 Certificate Policies:
 Policy: 2.16.840.1.114412.2.1
 CPS: https://www.digicert.com/CPS
 Authority Information Access:
 OCSP - URI:http://ocsp.digicert.com

Additional DNS names
that may serve this

cert

If this cert is
revoked, it’s serial

will be in the lists at
these URLS

Policy numbers are
magic (more on this

later)

This cert’s revocation
status may also be checked

via OSCP IPSec; TLS 59

TLS Certificate Authentication

}  During the TLS handshake, the client receives a certificate
chain, i.e. the server’s cert, as well as the certs of the
signing CA(s)

}  The client must validate the certificate chain to establish
trust
}  Does the server’s DNS name match the common name in the cert?

}  E.g. example.com cannot serve a cert with common name
google.com

}  Are any certs in the chain expired?
}  Is the CA’s signature cryptographically valid?
}  Is the cert of the root CA in the chain present in the client’s trusted

key store?
}  Is any cert in the chain revoked? (more on this later) IPSec; TLS 60

Extended Validation Certificates

}  What differs between a DV and an EV certs?
}  To get a DV cert, the CA verifies that you control the given

common name
}  To get an EV cert, the CA does a background check on you

and your company; EV certs cost a lot more than DV certs
}  Other than the background check, EV certs offer the same

security as DV certs
}  How does your browser tell the difference between DV and EV

certs? Uses the policy number in the X.509 certificate?
}  Each CA designates certain magic policy numbers to indicate

EV status
}  Your browser contains a hard-coded list of magic policy

numbers to identify EV certs :(
IPSec; TLS 61

Let’s encrypt

}  Free certificate service from a non-profit organization
that includes stakeholders from academia and industry

}  Very new, first certificate was issued in Sept. 2015
}  90 days lifetime: to be proactive to certificate

compromised and encourage automation of renewal
}  Revocation integrated with CRL and OCSP

IPSec; TLS 62

Let’s encrypt: validation

}  Provisioning a DNS record under example.com,
}  Provisioning an HTTP resource under a well-known URI

on https://example.com/

IPSec; TLS 63

3: Problems with TLS

Problems with TLS

}  TLS is a widely deployed and extremely successful
protocol

}  … but its not perfect
}  Problems with TLS:

1.  CA trustworthiness
2.  Weak cyphers and keys
3.  Protocol attacks
4.  Man-in-the-middle attacks
5.  Secret key compromise
6.  Implementation bugs

IPSec; TLS 65

CAs, Revisited

}  A CA is essentially a trusted third party
}  Certificate signatures are attestations of authenticity for the

server and (optionally) the client
}  Remember: trust is bad and should be minimized!

}  If a CA mistakenly (or purposefully) signs a certificate for
a domain and provides it to a malicious principal, TLS can
be subverted
}  Recall: any CA can sign a cert for any domain

}  Not only must we trust root CAs, but also intermediate
CAs that have been delegated signing authority

IPSec; TLS 66

CA Trustworthiness

}  Clearly, the CA secret key must be protected at all costs
}  Possession of the CA secret key grants adversaries the ability

to sign any domain
}  Attractive target for adversaries

}  Signatures should only be issued after verifying the
identity of the requester
}  Basic verification = Domain Validation
}  Expensive verification = Extended Validation
}  Should be easy, right?

IPSec; TLS 67

CA Failures

Issued to: Microsoft Corporation !
Issued by: VeriSign Commercial Software Publishers CA !
Valid from 1/29/2001 to 1/30/2002 !
Serial number is 1B51 90F7 3724 399C 9254 CD42 4637 996A !
!
Issued to: Microsoft Corporation 	

Issued by: VeriSign Commercial Software Publishers CA 	

Valid from 1/30/2001 to 1/31/2002 	

Serial number is 750E 40FF 97F0 47ED F556 C708 4EB1 ABFD 	

!
}  In 2001, Verisign issued two executable signing certificates to

someone claiming to be from Microsoft
}  Could be used to issue untrusted software updates

IPSec; TLS 68

Comodo

IPSec; TLS 69

DigiNotar

IPSec; TLS 70

TrustWave

IPSec; TLS 71

}  TLS allows the use of
different cryptographic
algorithms

}  Known weaknesses in
RC4 and MD5

IPSec; TLS 72

Cipher
Suite

Usage in Certs
(as of 2013)

RC4-MD5 2.8%
RC4-
SHA1

48.9%

AES128-
SHA1

1.2%

AES256-
SHA1

46.3%

Weak cipher suites

Weak keys

}  The ZMap team constantly collects all TLS certificates
visible in the IPv4 address space
}  http://zmap.io/ (data at https://scans.io/)
}  Currently, around 8.3 million certs being served on the

Internet

}  Observed repeated keys in-the-wild due to low entropy
}  Some systems auto-generate TLS keys at boot
}  Low boot-time entropy results in duplicate keys

}  Default TLS keys often shipped in network devices
}  Attackers can extract private keys from firmware!

IPSec; TLS 73

Protocol attacks (1)

}  Renegotiation attacks
}  Allows attacker to renegotiate a connection to the NULL

algorithm and inject plaintext data
}  Fixed by requiring cryptographic verification of previous TLS

handshakes

}  Version downgrade attacks
}  False Start TLS extension allows attackers to modify the

cipher suite list the client sends to server during handshake
}  Can force the usage of a known insecure cipher

IPSec; TLS 74

Protocol attacks (2)

}  Padding Oracle On Downgraded Legacy Encryption
(POODLE)
}  Cryptographic attack against CBC-mode cyphers when

used with SSL 3.0
}  Attacker can use a downgrade attack to force TLS

connections into SSL 3.0
}  Allowing security degradation for the sake of

interoperability is dangerous

IPSec; TLS 75

TLS Man-in-the-Middle attack

}  If Ce is self-signed, the user will be shown a warning
}  If the attacker steals CBofA and SBofA, then this attack will succeed

unless:
1.  Bank of America revokes the stolen cert
2.  The client checks to see if the cert has been revoked

}  If the attacker manages to buy a valid BofA cert from a CA, then the
only defense against this attack is certificate pinning

BofA

e

SBofA

Se

ClientHello ClientHello

BofA e

Does Ce
validate?

IPSec; TLS 76

Certificate pinning

}  Certificate pinning is a technique for
detecting sophisticated MitM attacks
}  Browser includes certs from well-known

websites in the trusted key store by default
}  Usually, only certs from root CAs are

included in the trusted key store

}  Example: Chrome ships with pinned
copies of the *.google.com certificate

}  Pinning isn’t just for browsers
}  Many Android and iPhone apps now include

pinned certificates
}  E.g. Facebook’s apps include a pinned cert

Trusted Key Store

Verisign

BofA

Google

IPSec; TLS 77

Secret key compromise

}  Secret key compromise leads to many devastating attacks
}  Attacker can successfully MitM TLS connections (i.e.

future connections)
}  Attacker can decrypt historical TLS packets encrypted

using the stolen key
}  Changing to a new keypair/cert does not solve the

problem!
}  The old, stolen key is still valid!
}  Attacker can still MitM connections!

IPSec; TLS 78

Certificate expiration

}  Certificate expiration is the
simplest, most fundamental
defense against secret key
compromise
}  All certificates have an expiration

date
}  A stolen key is only useful before

it expires

}  All certs should have a short
lifetime
}  Months, weeks, or even days

}  In reality most certs have a one
year lifetime
}  This gives an attacker plenty of

time to abuse a stolen key

Validity
 Not Before: Apr 8
00:00:00 2014 GMT
 Not After : Apr 12
12:00:00 2016 GMT

X.509 Certificate

IPSec; TLS 79

Certificate lifetimes

IPSec; TLS 80

Perfect Forward Secrecy

}  Perfect Forward Secrecy (PFS) addresses the issue of an
attacker decrypting past TLS sessions after a secret key
compromise

}  Uses Diffie-Hellman to compute the TLS session key
}  Session key is never sent over the wire, and is discarded after

the session completes
}  Since the session key cannot be recovered, the attacker cannot

decrypt historical TLS packets, even if they hold the secret key

}  PFS does not prevent MiTM attacks; future TLS sessions
are still in danger

IPSec; TLS 81

Example of key establishment that does not
have PFS

}  If at some point in the future Bob’s long term private key
Sk

B gets compromised, then the attacker can decrypt
E(Pk

B, K) and get session key K and then decrypt all
messages encrypted with K

IPSec; TLS 82

Pk
A, Sk

A Pk
B, Sk

B

E(Pk
B, K)||Sign(Sk

A, E(Pk
B, K))

https://weakdh.org

}  Summary: Logjam, active MITM attack that downgrades TLS
to 512-bit DHE export-grade cipher suites. They broke a 512
prime (many sites use the same one), estimate that an
academic team can break a 768-bit prime and that a nation-
state can break a 1024-bit prime.

}  Impact: TLS with support for export cipher and any protocol
using DH with 1024 or less and reusing the prime.

}  What to do: Disable support for export cipher suites and use
a 2048-bit Diffie-Hellman group

Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice, D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M.
Green, A. Halderman, N. Heninger, D. Springall, E. Thomé, L.
Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P.
Zimmermann, Best Paper Award CCS 2015

IPSec; TLS 83

Revocation

}  Certificate revocations are another fundamental
mechanism for mitigating secret key compromises
}  After a secret key has been compromised, the owner is

supposed to revoke the certificate

}  CA’s are responsible for hosting databases of revoked
certificates that they issued

}  Clients are supposed to query the revocation status of all
certificates they encounter during validation and not
accept the revoked ones

}  Two revocation protocols for TLS certificates
1.  Certificate Revocation Lists (CRLs)
2.  Online Certificate Status Protocol (OCSP)

IPSec; TLS 84

Certificate Revocation Lists (CRL)

}  CRLs are the original mechanism for announcing and
querying the revocation status of certificates

}  CAs compile lists of serial numbers of revoked
certificates
}  URL for the list is included in each cert issued by the CA
}  CRL is signed by the CA to protect integrity

IPSec; TLS 85

X.509 Certificates, Revisited

Certificate:
 Data:
 Subject: businessCategory=Private Organization/
1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.2=Delaware/
serialNumber=5157550/street=548 4th Street/
postalCode=94107, C=US, ST=California, L=San Francisco,
O=GitHub, Inc., CN=github.com
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:github.com, DNS:www.github.com
 X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl3.digicert.com/sha2-ev-server-g1.crl
 Full Name:
 URI:http://crl4.digicert.com/sha2-ev-server-g1.crl
Authority Information Access:
 OCSP - URI:http://ocsp.digicert.com

URLs where clients
can find the CRLs

for this cert

If the cert is revoked, this
serial number will appear

in the CRL

IPSec; TLS 86

Problems with CRLs

}  Clients should check the revocation status of every cert they
encounter, i.e, leaf, intermediate, and root certs

}  Problems
}  Latency – additional RTTs of latency are needed to check CRLs

before a page will load
}  Size – CRLs can grow to be quite large (~MBs), downloads may be

slow
}  MitM attackers can block access to the CRL/OCSP URLs

}  Browsers default-accept certificates if the revocation status cannot be
checked

}  Does caching CRLs mitigate these performance problems?
}  Yes, somewhat
}  But caching CRLs for long periods is dangerous: they may be out of

date

IPSec; TLS 87

Online Certificate Status Protocol

}  OCSP is the modern replacement for CRLs
}  API-style protocol that allows clients to query the revocation

status of one or more certs
}  No longer necessary to download the entire CRL

}  CA’s host an OCSP server that clients may query
}  OCSP URL included in OCSP-compliant certs
}  Responses are signed by the CA to maintain integrity
}  Responses also include an expiration date to prevent replay

attacks

IPSec; TLS 88

X.509 Certificates, Revisited

Certificate:
 Data:
 Subject: businessCategory=Private Organization/
1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.2=Delaware/
serialNumber=5157550/street=548 4th Street/
postalCode=94107, C=US, ST=California, L=San Francisco,
O=GitHub, Inc., CN=github.com
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:github.com, DNS:www.github.com
 X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl3.digicert.com/sha2-ev-server-g1.crl
 Full Name:
 URI:http://crl4.digicert.com/sha2-ev-server-g1.crl
Authority Information Access:
 OCSP - URI:http://ocsp.digicert.com

URLs where clients
can find the OCSP
server for this cert

Query the serial number
to see if this cert has

been revoked

IPSec; TLS 89

OCSP Stapling

}  It allows the presenter of a certificate to bear the
resource cost involved in providing OCSP responses by
appending ("stapling") a time-stamped OCSP response
signed by the CA to the initial TLS Handshake, eliminating
the need for clients to contact the CA.

•  The good:
•  Clients don’t need to query revocation status at all
•  Attacker cannot prevent clients from receiving revocation

information

•  The bad:
•  OCSP Must-Staple is very new, not supported by many

browsers and certs
IPSec; TLS 90

OCSP stapling in action

BofA

Client accepts the
cert if the OCSP

response is
stapled and valid

SBofA

BofA oc
sp

.v
er

is
ig

n.
co

m

OCSP
Database

Ca
Cb

CBofA

Is CBofA
revoked?

No, it’s not.

BofA

OCSP response is
“stapled” to the

cert

Is CBofA
revoked?

Yes, it is.

IPSec; TLS 91

Revocation in practice (1)

}  Revocation is one of the most broken parts of the TLS
ecosystem

}  Many administrators fail to revoke compromised
certificates

}  MitM attackers can block access to the CRL/OCSP URLs
}  Browsers default-accept certificates if the revocation

status cannot be checked
}  Solved by OCSP Stapling, but this extension is not well

deployed

IPSec; TLS 92

Revocation in practice (2)

}  Many browsers do not perform proper revocation checks
}  Chrome only does CRL/OCSP checks on EV certs, and

only on some platforms
}  Windows – Yes,
}  Linux and Android – No
}  Chrome uses an alternative implementation called CRLset which

is busted

}  Firefox only supports OCSP
}  But fewer than 5% of certificates use OCSP

}  Mobile browsers almost never check for revocations
}  Adds additional latency to HTTPS connections onto already slow

mobile networks
IPSec; TLS 93

Implementation bugs

}  Cryptography often assumed to be perfect
}  Usually the math is solid, but the implementation is found

wanting

}  Two major recent examples of security vulnerabilities due
to TLS implementation bugs
}  Apple's Double Fail
}  Heartbleed

IPSec; TLS 94

Apple’s Double Fail, a.k.a. Goto Fail

}  What’s wrong with this code?
// ...!
if ((err = SSLHashSHA1.update(&hashCtx,
&serverRandom)) != 0) !
 goto fail; !
if ((err = SSLHashSHA1.update(&hashCtx,
&signedParams)) != 0) !
 goto fail; !
 goto fail; !
if ((err = SSLHashSHA1.final(&hashCtx,
&hashOut)) != 0) !
 goto fail; !
// ...!
!
fail:!
 SSLFreeBuffer(&signedHashes); !
 SSLFreeBuffer(&hashCtx); !
 return err; !
} !

•  Example of an
implementation
vulnerability in TLS
signature verification

•  Found in February
2014, present in iOS
6 and OS X

IPSec; TLS 95

HeartBleed

}  Serious vulnerability OpenSSL versions 1.0.1 – 1.0.1f
}  Publicly revealed April 7, 2014
}  Exploits a bug in the TLS heartbeat extension

}  Allows adversaries to read memory of vulnerable services
}  i.e., buffer over-read vulnerability
}  Discloses addresses, sensitive data, potentially TLS secret keys

}  Major impact
}  OpenSSL is the de facto standard implementation of TLS, so

used everywhere
}  Many exposed services, often on difficult-to-patch devices
}  Trivial to exploit

IPSec; TLS 96

Heartbleed Exploit Example

BofA
SBofA

Heartbeat(str=“”, len=65535)

Echo(“A$fskndvknla… CERTIFICATE – PRIVATE KEY
234nwlkw3rFAF … *$DvdsaeE”)

Heartbeat(str=“Hello”, len=5)

Echo(“Hello”)

IPSec; TLS 97

Heartbleed as a natural experiment

}  Secret keys could have been stolen from all Heartbleed-
vulnerable servers

}  We know that administrators should have done three
things on April 7, 2014:

1.  Patch their copy of OpenSSL
2.  Reissue their certificate with a new asymmetric keypair
3.  Revoke their old (potentially compromised) certificate

}  Question: did administrators do these things?
}  If so, how quickly did they respond?

IPSec; TLS 98

Heartbleed-vulnerable Servers

23 days after
Heartbleed, 5% of

servers still unpatched

IPSec; TLS 99

How Long Will We Be Dealing With
Heartbleed?

40% of vulnerable certs
won’t expire for year :(

IPSec; TLS 100

Other TLS Attacks

}  Other interesting attacks on TLS
}  TLS stripping
}  BEAST
}  CRIME
}  BREACH
}  Lucky Thirteen

}  We'll talk about these in the context of web security

IPSec; TLS 101

Take home lessons

}  TLS is crucial for maintaining security and
privacy on the Web
}  Mature, well supported protocol
}  Its security was proven as of 2014

}  Unfortunately, TLS is plagued by many issues
}  Many different protocol-level issues that enable

MitM attacks
}  TLS implementations are buggy
}  Human beings fail to reissue/revoke certificates

properly
}  Browsers fail to perform revocation checks

IPSec; TLS 102

