Cristina Nita-Rotaru

CS6740: Network security

Additional material: Cryptography

1: Terminology and classic ciphers

Readings for this lecture

Required readings:

Cryptography on Wikipedia

Interesting reading

The Code Book by Simon Singh

The science of secrets...

- <u>Cryptography</u>: the study of mathematical techniques related to aspects of providing information security services (create)
- Cryptanalysis: the study of mathematical techniques for attempting to defeat information security services (break)
- Cryptology: the study of cryptography and cryptanalysis (both)

Basic terminology in cryptography

- cryptography
- cryptanalysis
- cryptology

- plaintexts
- ciphertexts
- keys
- encryption
- decryption

Cryptographic protocols

Protocols that

- Enable parties
- Achieve objectives (goals)
- Overcome adversaries (attacks)
- Need to understand
 - Who are the parties and the context in which they act
 - What are the goals of the protocols
 - What are the capabilities of adversaries

Cryptographic protocols: Parties

Introduction of Alice and Bob attributed to the original RSA paper.

Check out wikipedia for a longer list of malicious crypto players.

Cryptographic protocols: Objectives/Goals

- Most basic problem:
 - Ensure security of communication over an insecure medium
- Basic security goals:
 - Confidentiality (secrecy, confidentiality)
 - Only the intended recipient can see the communication
 - Authenticity (integrity)
 - Communication is generated by the alleged sender

Goals of modern cryptography

- Pseudo-random number generation
- Non-repudiation: digital signatures
- Anonymity
- Zero-knowledge proof
- E-voting
- Secret sharing

Cryptographic protocols: Attackers

Interaction with data and protocol

Eavesdropping or actively participating in the protocol

Resources:

- Computation, storage
- Limited or unlimited
- Access to previously encrypted communication
 - Only encrypted information (ciphertext)
 - Pairs of message and encrypted version (plaintext, ciphertext)
- Interaction with the cipher algorithm
 - Choose or not for what message to have the encrypted version (chose ciphertext)

Interaction with data and protocol

- <u>Passive</u>: the attacker only monitors the communication. It threatens confidentiality.
 - Example: listen to the communication between Alice and Bob, and if it's encrypted try to decrypt it.
- <u>Active</u>: the attacker is actively involved in the protocol in deleting, adding or modifying data. It threatens all security services.
 - Example: Alice sends Bob a message: 'meet me today at 5', Carl intercepts the message and modifies it 'meet me tomorrow at 5', and then sends it to Bob.

Resources

- In practice attackers have limited computational power
- Some theoretical models consider that the attacker has unlimited computational resources

Attacker knowledge of previous encryptions

Ciphertext-only attack

- Attacker knows only the ciphertext
- A cipher that is not resilient to this attack is not secure

Known plaintext attack

- Attacker knows one or several pairs of ciphertext and the corresponding plaintext
- Goal is to be able to decrypt other ciphertexts for which the plaintext is unknown

Interactions with cipher algorithm

Chosen-plaintext attack

- Attacker can choose a number of messages and obtain the ciphertexts for them
- <u>Adaptive</u>: the choice of plaintext depends on the ciphertext received from previous requests
- Chosen-ciphertext attack
 - Similar to the chosen-plaintext attack, but the cryptanalyst can choose a number of ciphertexts and obtain the plaintexts
 - <u>Adaptive</u>: the choice of ciphertext may depend on the plaintext received from previous requests

Approaches to secure communication

Steganography

- "covered writing"
- hides the existence of a message
- depends on secrecy of method

- "hidden writing"
- hide the meaning of a message
- depends on secrecy of a short key, not method

Shift cipher

- A substitution cipher
- The key space:
 - [0 .. 25]
- Encryption given a key K:
 - each letter in the plaintext P is replaced with the K' th letter following corresponding number (shift right)
- Decryption given K:
 - shift left

History: K = 3, Caesar's cipher

Shift Cipher: Cryptanalysis

• Can an attacker find K?

- YES: by a bruteforce attack through exhaustive key search
- key space is small (<= 26 possible keys)</p>

Lessons:

- Cipher key space needs to be large enough
- Exhaustive key search can be effective

Mono-alphabetical substitution cipher

- The key space: all permutations of $\Sigma = \{A, B, C, ..., Z\}$
- Encryption given a key (permutation) π :
 - each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π:
 - each letter Y in the cipherext P is replaced with $\pi^{-1}(Y)$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 π = B A D C Z H W Y G O Q X L V T R N M S K J I P F E U

BECAUSE → AZDBJSZ

Cryptanalysis of mono-alphabetical substitution cipher

- Exhaustive search is infeasible
 - key space size is $26! \approx 4*10^{26}$
- Dominates the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then, until frequency analysis

History of frequency analysis

- Discovered by the Arabs
 - Earliest known description of frequency analysis is in a book by the ninth-century scientist Al-Kindi
- Rediscovered or introduced from the Arabs in the Europe during the Renaissance
- Frequency analysis made substitution cipher insecure

Frequency analysis

- Each language has certain features: frequency of letters, or of groups of two or more letters
- Substitution ciphers preserve the language features
- Substitution ciphers are vulnerable to frequency analysis attacks

Frequency of letters in English

How to defeat frequency analysis?

- Use larger blocks as the basis of substitution. Rather than substituting one letter at a time, substitute 64 bits at a time, or 128 bits.
 - Leads to block ciphers such as DES & AES.
- Use different substitutions to get rid of frequency features.
 - Leads to polyalphabetical substitution ciphers
 - Stream ciphers

Towards polyalphabetic substitution ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460' s by Alberti)
 - use more than one cipher alphabet, and switch between them when encrypting different letters
- Giovani Battista Bellaso published it in 1553
- Developed into a practical cipher by Blaise de Vigenère and published in 1586

Vigenère cipher

Definition:

Given m, a positive integer, $P = C = (Z_{26})^n$, and $K = (k_1, k_2, ..., k_m)$ a key, we define:

Encryption:

$$e_k(p_1, p_2... p_m) = (p_1+k_1, p_2+k_2...p_m+k_m) \pmod{26}$$

Decryption:

 $d_k(c_1, c_2... c_m) = (c_1-k_1, c_2-k_2... c_m-k_m) \pmod{26}$

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

Example:

Plaintext: CRYPTOGRAPHY

Key: LUCKLUC KLUCK

Ciphertext: NLAZEIIBLJJI

Security of Vigenere cipher

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphers as there are letters in the key

Vigenere cipher cryptanalysis

- Find the length of the key
- Divide the message into that many shift cipher encryptions
- Use frequency analysis to solve the resulting shift ciphers
 - how?

How to find the key length?

- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random
- Two methods to find the key
 - length:
 - Kasisky test
 - Index of coincidence (Friedman)

History of breaking Vigenere

- I 596 Cipher was published by Vigenere
- I854 It is believed the Charles Babbage knew how to break it in 1854, but he did not published the results
- I863 Kasiski showed the Kasiski examination that showed how to break Vigenere
- I 920 Friedman published ``The index of coincidence and its applications to cryptography"

Kasisky test for finding key length

- Observation: two identical segments of plaintext, will be encrypted to the same ciphertext, if the they occur in the text at the distance Δ, (Δ=0 (mod m), m is the key length).
- Algorithm:
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments: ΔI , $\Delta 2$, ...
 - m divides $gcd(\Delta I, \Delta 2, ...)$

Example of the Kasisky test

Key	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G
PT	t	h	е	S	u	n	а	n	d	t	h	е	m	a	n	i	n	t	h	е	m	0	0	n
СТ	D	Ρ	R	Y	E	V	Ν	Т	Ν	В	U	K	W	Ι	А	0	Х	В	U	K	W	W	В	Т

Repeating patterns (strings of length 3 or more) in ciphertext are likely due to repeating plaintext strings encrypted under repeating key strings; thus the location difference should be multiples of key lengths.

Security principles

Kerckhoffs's Principle:

• A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

Shannon's maxim:

- "The enemy knows the system."
- Security by obscurity doesn't work
- Should assume that the adversary knows the algorithm; the only secret the adversary is assumed to not know is the key
- What is the difference between the algorithm and the key?

Friedrich Wilhelm Kasiski (1805 – 1881)

 German infantry officer, cryptographer and archeologist.

Charles Babbage (1791 – 1871)

- English mathematician, philosopher, inventor and mechanical engineer who originated the concept of a programmable computer.
- Considered a "father of the computer", he invented the first mechanical computer that eventually led to more complex designs.

William Frederick Friedman (1891 – 1969)

- US Army cryptographer who ran the research division of the Army's Signals Intelligence Service (SIS) in the 1930s, and parts of its follow-on services into the 1950s.
- In 1940, people from his group, led by Frank Rowlett broke Japan's PURPLE cipher machine

Take home lessons

- Shift ciphers are easy to break using brute force attacks, they have small key space
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks
- Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis

2: One-time Pad, information theoretic security, and stream ciphers

Readings for this lecture

- Required reading from wikipedia
 - One-Time Pad
 - Information theoretic security
 - <u>Stream cipher</u>
 - <u>Pseudorandom number generator</u>
- Stream ciphers on Dan Boneh's Cryptography I course on Coursera

Begin Math

Cryptography

Random Variable

A discrete random variable, X, consists of a finite set X, and a probability distribution defined on X. The probability that the random variable X takes on the value x is denoted Pr[X = x]; sometimes, we will abbreviate this to Pr[x] if the random variable X is fixed. It must be that

$$0 \le \Pr[x]$$
 for all $x \in \mathcal{X}$
 $\sum_{x \in \mathcal{X}} \Pr[x] = 1$

Example of random variables

- Let random variable D₁ denote the outcome of throwing one die (with numbers 0 to 5 on the 6 sides) randomly, then D={0,1,2,3,4,5} and Pr[D₁=i] = 1/6 for 0≤ i ≤ 5
- Let random variable D₂ denote the outcome of throwing a second such die randomly
- Let random variable S₁ denote the sum of the two dice, then S ={0,1,2,...,10}, and

 $Pr[S_1=0] = Pr[S_1=10] = 1/36$ $Pr[S_1=1] = Pr[S_1=9] = 2/36 = 1/18$

• Let random variable S_2 denote the sum of the two dice modulo 6, what is the distribution of S_2 ?

. . .

Relationships between random variables

Assume X and Y are two random variables, then we define:

- joint probability: Pr[x, y] is the probability that
 X takes value x and Y takes value y.
- conditional probability: Pr[x|y] is the probability that X takes value x given that Y takes value y.

Pr[x|y] = Pr[x, y] / Pr[y]

- independent random variables: X and Y are said to be independent if Pr[x,y] = Pr[x]P[y], for all $x \in X$ and all $y \in Y$.

Examples

- ▶ Joint probability of D_1 and D_2 for $0 \le i, j \le 5$, $Pr[D_1=i, D_2=j] = ?$
- What is the conditional probability Pr[D₁=i | D₂=j] for 0≤i, j≤5?
- Are D_1 and D_2 independent?
- Suppose D₁ is plaintext and D₂ is key, and S₁ and S₂ are ciphertexts of two different ciphers, which cipher would you use?

Practice exercises

- What is the joint probability of D_1 and S_1 ?
- What is the joint probability of D_2 and S_2 ?
- What is the conditional probability

 $\Pr[S_1 = s \mid D_1 = i]$ for $0 \le i \le 5$ and $0 \le s \le 10$?

What is the conditional probability

 $\Pr[\mathbf{D}_1=i \mid \mathbf{S}_2=s]$ for $0 \le i \le 5$ and $0 \le s \le 5$?

Are **D**₁ and **S**₁ independent?

• Are \mathbf{D}_1 and \mathbf{S}_2 independent?

Bayes' Theorem

If P[y] > 0 then

$$P[x \mid y] = \frac{P[x]P[y \mid x]}{P[y]}$$
$$P[y] = \sum_{x \in X} P[x, y] = \sum_{x \in X} P[x]p[y \mid x]$$

Corollary

X and Y are independent random variables iff P[x|y] = P[x], for all $x \in X$ and all $y \in Y$.

End Math

Cryptography

One-Time Pad

- Fix the vulnerability of the Vigenere cipher by using very long keys
- Key is a random string that is at least as long as the plaintext
- Encryption is similar to shift cipher
- Invented by Vernam in the 1920s

One-Time Pad

Let $Z_m = \{0, 1, ..., m-1\}$ be the alphabet.

Plaintext space = Ciphtertext space = Key space = $(Z_m)^n$ The key is chosen uniformly randomly Plaintext $X = (x_1 x_2 ... x_n)$ Key $K = (k_1 k_2 ... k_n)$ Ciphertext $Y = (y_1 y_2 ... y_n)$ $e_k(X) = (x_1+k_1 x_2+k_2 ... x_n+k_n) \mod m$ $d_k(Y) = (y_1-k_1 y_2-k_2 ... y_n-k_n) \mod m$

Binary version of One-Time Pad

```
Plaintext space = Ciphtertext space = Keyspace = {0,1}<sup>n</sup>
Key is chosen randomly
For example:
Plaintext is ||0||0||
```

- Key is 01101001
- Then ciphertext is 10110010

Bit operators

- Bit AND
 - $0 \land 0 = 0 \qquad 0 \land | = 0 \qquad | \land 0 = 0 \qquad | \land | = |$
- Bit OR
 - $0 \lor 0 = 0$ $0 \lor | = |$ $| \lor 0 = |$ $| \lor | = |$
- Addition mod 2 (also known as Bit XOR) $0 \oplus 0 = 0$ $0 \oplus | = |$ $| \oplus 0 = |$ $| \oplus | = 0$
- Can we use operators other than Bit XOR for binary version of One-Time Pad?

How good is One-Time Pad?

Intuitively, it is secure ...

- The key is random, so the ciphertext is completely random
- How to formalize the confidentiality requirement?
 - Want to say "certain thing" is not learnable by the adversary (who sees the ciphertext). But what is the "certain thing"?

Which (if any) of the following is the correct answer?

- The key.
- The plaintext.
- Any bit of the plaintext.
- Any information about the plaintext.
 - E.g., the first bit is 1, the parity is 0, or that the plaintext is not "aaaa", and so on

Snannon (mormanon-meorenc) Security = Perfect Secrecy

Basic idea: Ciphertext should reveal no "information" about Plaintext

Definition.

An encryption over a message space \boldsymbol{M} is perfectly secure if

 \forall probability distribution over M

 \forall message m \in **M**

 \forall ciphertext c \in **C** for which Pr[C=c] > 0

We have

Pr [PT=m | CT=c] = Pr [PT = m]

Cryptography

Explanation of the definition

- Pr [PT = m] is what the adversary believes the probability that the plaintext is m, before seeing the ciphertext
- Pr [PT = m | CT=c] is what the adversary believes after seeing that the ciphertext is c
- Pr [PT=m | CT=c] = Pr [PT = m] means that after knowing that the ciphertext is C₀, the adversary's belief does not change

Equivalent definition of Perfect Secrecy

Definition. An encryption scheme over a message space M is perfectly secure if \forall probability distribution over M, the random variables **PT** and **CT** are independent. That is,

∀ message m∈M
∀ ciphertext c ∈C
Pr [PT=m ∧CT=c] = Pr [PT = m] Pr [CT = c]

Note that this is equivalent to: When $\Pr[\mathbf{CT} = c] \neq 0$, we have $\Pr[\mathbf{PT} = m] = \Pr[\mathbf{PT} = m \land \mathbf{CT} = c] / \Pr[\mathbf{CT} = c] = \Pr[\mathbf{PT} = m | \mathbf{CT} = c]$

This is also equivalent to: When $Pr [PT = m] \neq 0$, we have $Pr [CT = c] = Pr [PT=m \land CT=c] / Pr [PT = m] = Pr [CT=c | PT=m]$

Example for information medicular security

- Consider an example of encrypting the result of a 6-side dice (1 to 6).
 - Method I: randomly generate K=[0..5], ciphertext is result + K.
 - What is plaintext distribution? After seeing that the ciphertext is 6, what could be the plaintext. After seeing that the ciphertext is 11, what could be the plaintext?
 - Method 2: randomly generate K=[0..5], ciphertext is (result + K) mod 6.
 - Same questions.
 - Can one do a brute-force attack?

Perfect secrecy

- Fact: When keys are uniformly chosen in a cipher, the cipher has perfect secrecy iff. the number of keys encrypting M to C is the same for any (M,C)
 - This implies that $\forall c \forall m_1 \forall m_2 \Pr[CT=c | PT=m_1] = \Pr[CT=c | PT=m_2]$

One-time pad has perfect secrecy when limited to messages over the same length (Proof?)

Key randomness in One-Time Pad

- One-Time Pad uses a very long key, what if the key is not chosen randomly, instead, texts from, e.g., a book are used as keys.
 - this is not One-Time Pad anymore
 - this does not have perfect secrecy
 - this can be broken
 - How?
- > The key in One-Time Pad should never be reused.
 - If it is reused, it is Two-Time Pad, and is insecure!
 - Why?

Usage of One-Time Pad

- To use one-time pad, one must have keys as long as the messages.
- To send messages totaling certain size, sender and receiver must agree on a shared secret key of that size.
 - typically by sending the key over a secure channel
- This is difficult to do in practice.
- Can't one use the channel for send the key to send the messages instead?
- Why is OTP still useful, even though difficult to use?

Usage of One-Time Pad

- The channel for distributing keys may exist at a different time from when one has messages to send.
- The channel for distributing keys may have the property that keys can be leaked, but such leakage will be detected
 - Such as in Quantum cryptography

The "bad news" theorem for Perfect Secrecy

- Question: OTP requires key as long as messages, is this an inherent requirement for achieving perfect secrecy?
- Answer. Yes. Perfect secrecy implies that key-length ≥ msglength

Implication: Perfect secrecy difficult to achieve in practice

Stream ciphers

- In One-Time Pad, a key is a random string of length at least the same as the message
- Stream ciphers:
 - Idea: replace "rand" by "pseudo rand"
 - Use Pseudo Random Number Generator
 - ▶ PRNG: $\{0, I\}^s \rightarrow \{0, I\}^n$
 - expand a short (e.g., 128-bit) random seed into a long (e.g., 10⁶ bit) string that "looks random"
 - Secret key is the seed
 - $E_{key}[M] = M \oplus PRNG(key)$

The RC4 stream cipher

- A proprietary cipher owned by RSA, designed by Ron Rivest in 1987.
- Became public in 1994.
- Simple and effective design.
- Variable key size (typical 40 to 256 bits),
- Output unbounded number of bytes.
- Widely used (web SSL/TLS, wireless WEP).
- Extensively studied, not a completely secure PRNG, first part of output biased, when used as stream cipher, should use RC4-Drop[n]
 - Which drops first n bytes before using the output
 - Conservatively, set n=3072

Pseudo-random number generator

- Useful for cryptography, simulation, randomized algorithm, etc.
 - Stream ciphers, generating session keys
- The same seed always gives the same output stream
 - Why is this necessary for stream ciphers?
- Simulation requires uniform distributed sequences
 - E.g., having a number of statistical properties
- Cryptographically secure pseudo-random number generator requires unpredictable sequences
 - satisfies the "next-bit test": given consecutive sequence of bits output (but not seed), next bit must be hard to predict
- Some PRNG's are weak: knowing output sequence of sufficient length, can recover key.
- ⁶³ Do not use these for cryptographic purposes

Cryptography

Properties of stream ciphers

- Typical stream ciphers are very fast
- Widely used, often incorrectly
 - Content Scrambling System (uses Linear Feedback Shift Registers incorrectly),
 - Wired Equivalent Privacy (uses RC4 incorrectly)
 - SSL (uses RC4, SSLv3 has no known major flaw)

Security properties of stream ciphers

- Under known plaintext, chosen plaintext, or chosen ciphertext, the adversary knows the key stream (i.e., PRNG(key))
 - Security depends on PRNG
 - PRNG must be "unpredictable"
- Do stream ciphers have perfect secrecy?
- How to break a stream cipher in a brute-force way?
- If the same key stream is used twice, then easy to break.
 - This is a fundamental weakness of stream ciphers; it exists even if the PRNG used in the ciphers is strong

Using stream ciphers in practice

If the same key stream is used twice, then easy to break.

- This is a fundamental weakness of stream ciphers; it exists even if the PRNG used in the ciphers is strong
- In practice, one key is used to encrypt many messages
 - Example: Wireless communication
 - Solution: Use Initial vectors (IV).
 - $E_{key}[M] = [IV, M \oplus PRNG(key || IV)]$
 - IV is sent in clear to receiver;
 - IV needs integrity protection, but not confidentiality protection
 - IV ensures that key streams do not repeat, but does not increase cost of brute-force attacks
 - Without key, knowing IV still cannot decrypt
 - Need to ensure that IV never repeats! How?

Take home lessons

- OTP has perfect forward secrecy if key is used once, is random and as long as the message
- One has to be very careful with how he uses stream ciphers: if the keystream repeats then it's easy to decrypt all messages encrypted with the keystream

3: Semantic security, block ciphers and encryption modes

Readings for this lecture

- Required reading from wikipedia
 - Block Cipher
 - Ciphertext Indistinguishability
 - Block cipher modes of operation

Notation for symmetric-key encryption

- A symmetric-key encryption scheme is comprised of three algorithms
 - Gen the key generation algorithm
 - The algorithm must be probabilistic/randomized
 - Output: a key k
 - **Enc** the encryption algorithm
 - Input: key k, plaintext m
 - Output: ciphertext $c := Enc_k(m)$
 - **Dec** the decryption algorithm
 - ▶ Input: key *k*, ciphertext *c*
 - Output: plaintext $m := \mathbf{Dec}_k(m)$

Requirement: $\forall k \forall m \ [\mathbf{Dec}_k(\mathbf{Enc}_k(m)) = m]$

Cryptography

Randomized vs. deterministic encryption

Encryption can be randomized,

- i.e., same message, same key, run encryption algorithm twice, obtains two different ciphertexts
- E.g, Enc_k[m] = (r, PRNG[k||r]⊕m), i.e., the ciphertext includes two parts, a randomly generated r, and a second part
- Ciphertext space can be arbitrarily large
- Decryption is deterministic in the sense that
 - For the same ciphertext and same key, running decryption algorithm twice always result in the same plaintext
- Each key induces a one-to-many mapping from plaintext space to ciphertext space
 - Corollary: ciphertext space must be equal to or larger than plaintext space

Towards computational security

- Perfect secrecy is too difficult to achieve.
- Computational security uses two relaxations:
 - Security is preserved only against efficient (computationally bounded) adversaries
 - Adversary can only run in feasible amount of time
 - Adversaries can potentially succeed with some very small probability (that we can ignore the case it actually happens)
- Two approaches to formalize computational security: concrete and asymptotic
The concrete approach

- Quantifies the security by explicitly bounding the maximum success probability of adversary running with certain time:
 - * "A scheme is (t,ε)-secure if every adversary running for time at most t succeeds in breaking the scheme with probability at most ε"
 - Example: a strong encryption scheme with n-bit keys may be expected to be (t, t/2ⁿ)-secure.
 - ▶ N=128, t=2⁶⁰, then ε = 2⁻⁶⁸. (# of seconds since big bang is 2⁵⁸)
- Makes more sense with symmetric encryption schemes because they use fixed key lengths.

The asymptotic approach

A cryptosystem has a security parameter

- E.g., number of bits in the RSA algorithm (1024,2048,...)
- Typically, the key length depends on the security parameter
 - The bigger the security parameter, the longer the key, the more time it takes to use the cryptosystem, and the more difficult it is to break the scheme
- The crypto system must be efficient, i.e., runs in time polynomial in the security parameter
- * "A scheme is secure if every Probabilistic Polynomial Time (PPT) algorithm succeeds in breaking the scheme with only negligible probability"
 - "negligible" roughly means goes to 0 exponentially fast as the security parameter increases

Defining security

- Desire "semantic security", i.e., having access to the ciphertext does not help adversary to compute any function of the plaintext.
 - Difficult to use
- Equivalent notion: Adversary cannot distinguish between the ciphertexts of two plaintexts

Towards IND-CPA security

 Ciphertext Indistinguishability under a Chosen-Plaintext Attack: Define the following IND-CPA experiment :

- Involving an Adversary and a Challenger
- Instantiated with an Adversary algorithm A, and an encryption scheme II
 = (Gen, Enc, Dec)

Cryptography

The IND-CPA experiment explained

- A k is generated by Gen()
- Adversary is given oracle access to $Enc_k(\cdot)$,
 - Oracle access: one gets its question answered without knowing any additional information
- Adversary outputs a pair of equal-length messages m₀ and m₁
- A random bit b is chosen, and adversary is given $Enc_k(m_b)$
 - Called the challenge ciphertext
- Adversary does any computation it wants, while still having oracle access to $Enc_k(\cdot)$, and outputs b'
- Adversary wins if b=b'

CPA-secure (aka IND-CPA security)

- A encryption scheme II = (Gen, Enc, Dec) has indistinguishable encryption under a chosen-plaintext attack (i.e., is IND-CPA secure) iff. for all PPT adversary A, there exists a negligible function negl such that
 - $Pr[A \text{ wins in IND-CPA experiment}] \leq \frac{1}{2} + negl(n)$
- No deterministic encryption scheme is CPA-secure. Why?

CPA security

- Ciphertext indistinguishability under chosen plaintext attack (IND-CPA)
 - Challenger chooses a random key K
 - Adversary chooses a number of messages and obtains their ciphertexts under key K
 - Adversary chooses two equal-length messages m₀ and m₁, sends them to a Challenger
 - Challenger generates C=E_K[m_b], where b is a uniformly randomly chosen bit, and sends C to the adversary
 - Adversary outputs b' and wins if b=b'
 - Adversary advantage is | Pr[Adv wins] 1/2 |
 - Adversary should not have a non-negligible advantage
 - E.g, Less than, e.g., 1/2⁸⁰ when the adversary is limited to certain amount of computation;
 - decreases exponentially with the security parameter (typically length of the key)

79

Intuition of IND-CPA security

- Perfect secrecy means that any plaintext is encrypted to a given ciphertext with the same probability, i.e., given any pair of M₀ and M₁, the probabilities that they are encrypted into a ciphertext C are the same
 - Hence no adversary can tell whether C is ciphertext of M_0 or M_1 .

IND-CPA means

- With bounded computational resources, the adversary cannot tell which of M_0 and M_1 is encrypted in C
- Stream ciphers can be used to achieve IND-CPA security when the underlying PRNG is cryptographically strong
 - (i.e., generating sequences that cannot be distinguished from random, even when related seeds are used)

computational security vs. information medicule security

- If a cipher has only computational security, then it can be broken by a brute force attack, e.g., enumerating all possible keys
 - Weak algorithms can be broken with much less time
- How to prove computational security?
 - Assume that some problems are hard (requires a lot of computational resources to solve), then show that breaking security means solving the problem
- Computational security is foundation of modern cryptography.

Why block ciphers?

- One thread of defeating frequency analysis
 - Use different keys in different locations
 - Example: one-time pad, stream ciphers
- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
 - Example: block cipher

Block ciphers

An n-bit plaintext is encrypted to an n-bit ciphertext

- ▶ *P* : {0, I}ⁿ
- ► C : {0, |}ⁿ
- ▶ *K* : {0, |}^s
- **E**: $K \times P \rightarrow C$: E_k: a permutation on {0, I} ⁿ
- **D**: $K \times C \rightarrow P$: **D**_k is **E**_k⁻¹
- Block size: n
- Key size: s

Data Encryption Standard (DES)

- Designed by IBM, with modifications proposed by the National Security Agency
- US national standard from 1977 to 2001
- De facto standard
- Block size is 64 bits;
- Key size is 56 bits
- Has 16 rounds
- Designed mostly for hardware implementations
 - Software implementation is somewhat slow
- Considered insecure now
 - vulnerable to brute-force attacks

Attacking block ciphers

Types of attacks to consider

- known plaintext: given several pairs of plaintexts and ciphertexts, recover the key (or decrypt another block encrypted under the same key)
- how would chosen plaintext and chosen ciphertext be defined?

Standard attacks

- exhaustive key search
- dictionary attack
- differential cryptanalysis, linear cryptanalysis
- Side channel attacks.

DES's main vulnerability is short key size.

against block ciphers

Construct a table with the following entries

- ▶ (K, E_K[0]) for all possible key K
- Sort based on the second field (ciphertext)
- How much time does this take?
- To attack a new key K (under chosen message attacks)
 - Choose 0, obtain the ciphertext C, looks up in the table, and finds the corresponding key
 - How much time does this step take?
- Trade off space for time

Advanced Encryption Standard

- In 1997, NIST made a formal call for algorithms stipulating that the AES would specify an unclassified, publicly disclosed encryption algorithm, available royalty-free, worldwide.
- Goal: replace DES for both government and private-sector encryption.
- The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits.
- In 1998, NIST selected 15 AES candidate algorithms.
- On October 2, 2000, NIST selected Rijndael (invented by Joan Daemen and Vincent Rijmen) to as the AES.

AES features

- Designed to be efficient in both hardware and software across a variety of platforms.
- Block size: 128 bits
- Variable key size: 128, 192, or 256 bits.
- No known weaknesses

Need for Encryption Modes

- A block cipher encrypts only one block
- Needs a way to extend it to encrypt an arbitrarily long message
- Want to ensure that if the block cipher is secure, then the encryption is secure
- Aims at providing Semantic Security (IND-CPA) assuming that the underlying block ciphers are strong

Block Cipher Encryption Modes: ECB

- Message is broken into independent blocks;
- Electronic Code Book (ECB): each block encrypted separately.
- Encryption: c_i = E_k(x_i)
- Decrytion: x_i = D_k(c_i)

Properties of ECB

• Deterministic:

- the same data block gets encrypted the same way,
 reveals patterns of data when a data block repeats
- when the same key is used, the same message is encrypted the same way
- Usage: not recommended to encrypt more than one block of data
- How to break the semantic security (IND-CPA) of a block cipher with ECB?

DES Encryption Modes: CBC

Cipher Block Chaining (CBC):

- Uses a random Initial Vector (IV)
- Next input depends upon previous output Encryption: C_i= E_k (M_i⊕C_{i-1}), with C₀=IV Decryption: M_i= C_{i-1}⊕D_k(C_i), with C₀=IV

Properties of CBC

- Randomized encryption: repeated text gets mapped to different encrypted data.
 - can be proven to provide IND-CPA assuming that the block cipher is secure (i.e., it is a Pseudo Random Permutation (PRP)) and that IV's are randomly chosen and the IV space is large enough (at least 64 bits)
- Each ciphertext block depends on all preceding plaintext blocks.
- Usage: chooses random IV and protects the integrity of IV
 - The IV is not secret (it is part of ciphertext)
 - The adversary cannot control the IV

Encryption modes: CTR

- Counter Mode (CTR): Defines a stream cipher using a block cipher
 - Uses a random IV, known as the counter
 - Encryption: $C_0 = IV, C_i = M_i \oplus E_k[IV+i]$
 - Decryption: $IV=C_0$, $M_i = C_i \oplus E_k[IV+i]$

Cryptography

Properties of CTR

• Gives a stream cipher from a block cipher

- Randomized encryption:
 - when starting counter is chosen randomly
- Random Access: encryption and decryption of a block can be done in random order, very useful for hard-disk encryption.
 - E.g., when one block changes, re-encryption only needs to encrypt that block. In CBC, all later blocks also need to change

Take home lessons

- AES is the current standard for block ciphers
- Key size most important factor to deter brute force attacks
- Number of rounds also important to deter attacks
- When encrypting data larger than the block the encryption mode choice is crucial for the security of the encrypted data

4: Cryptographic hash functions and message authentication codes

Readings for This Lecture

- Wikipedia
 - <u>Cryptographic Hash Functions</u>
 - Message Authentication Code

Data Integrity and Source Authentication

- Encryption does not protect data from modification by another party.
 - Why?
- Need a way to ensure that data arrives at destination in its original form as sent by the sender and it is coming from an authenticated source.

Hash Functions

- A hash function maps a message of an arbitrary length to a m-bit output
 - output known as the fingerprint or the message digest
- What is an example of hash functions?
 - Give a hash function that maps Strings to integers in [0,2^{32}-1]
- Cryptographic hash functions are hash functions with additional security requirements

Using Hash Functions for Message Integrity

- Method 1: Uses a Hash Function h, assuming an authentic (adversary cannot modify) channel for short messages
 - Transmit a message M over the normal (insecure) channel
 - Transmit the message digest h(M) over the secure channel
 - When receiver receives both M' and h, how does the receiver check to make sure the message has not been modified?
- This is insecure. How to attack it?
- A hash function is a many-to-one function, so collisions can happen.

Cryptographic Hash Functions

Given a function $h: X \rightarrow Y$, then we say that h is:

preimage resistant (one-way):

if given $y \in Y$ it is computationally infeasible to find a value $x \in X$ s.t. h(x) = y

- 2-nd preimage resistant (weak collision resistant): if given x ∈ X it is computationally infeasible to find a value x' ∈ X, s.t. x' ≠x and h(x') = h(x)
- Collision resistant (strong collision resistant): if it is computationally infeasible to find two distinct values x', x ∈ X, s.t. h(x') = h(x)

Usages of Cryptographic Hash Functions

- Software integrity
 - E.g., tripwire
- Timestamping
 - How to prove that you have discovered a secret on an earlier date without disclosing it?

Covered later

- Message authentication
- One-time passwords
- Digital signature

Bruteforce Attacks on Hash Functions

- Attacking one-wayness
 - Goal: given h:X \rightarrow Y, y \in Y, find x such that h(x)=y
 - Algorithm:
 - pick a random value x in X, check if h(x)=y, if h(x)=y, returns x; otherwise iterate
 - after failing q iterations, return fail
 - The average-case success probability is

$$\mathcal{E} = 1 - \left(1 - \frac{1}{|Y|}\right)^q \approx \frac{q}{|Y|}$$

▶ Let $|Y|=2^{m}$, to get ε to be close to 0.5, q $\approx 2^{m-1}$

Bruteforce Attacks on Hash Functions

Attacking collision resistance

- Goal: given h, find x, x' such that h(x)=h(x')
- Algorithm: pick a random set X₀ of q values in X for each x∈X₀, computes y_x=h(x) y_x=y_x, for some x' ≠x then return (x,x') else fail
- The average success probability is

$$1 - \left(1 - \frac{1}{|Y|}\right)^{\frac{q(q-1)}{2}} \approx 1 - e^{-\frac{q(q-1)}{2|Y|}}$$

- ► Let $|Y|=2^{m}$, to get ϵ to be close to 0.5, q $\approx 2^{m/2}$
- This is known as the birthday attack.

if

Well Known Hash Functions

MD5

- output 128 bits
- collision resistance completely broken by researchers in China in 2004

SHA1

- output 160 bits
- no collision found yet, but method exist to find collisions in less than 2⁸⁰
- considered insecure for collision resistance
- one-wayness still holds
- SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)
 - outputs 224, 256, 384, and 512 bits, respectively
 - No real security concerns yet

Functions

- Message is divided into fixed-size blocks and padded
- Uses a compression function f, which takes a chaining variable (of size of hash output) and a message block, and outputs the next chaining variable
- Final chaining variable is the hash value

NIST SHA-3 Competition

- NIST is having an ongoing competition for SHA-3, the next generation of standard hash algorithms
- > 2007: Request for submissions of new hash functions
- 2008: Submissions deadline. Received 64 entries. Announced firstround selections of 51 candidates.
- 2009: After First SHA-3 candidate conference in Feb, announced 14 Second Round Candidates in July.
- 2010: After one year public review of the algorithms, hold second SHA-3 candidate conference in Aug. Announced 5 Third-round candidates in Dec.
- > 2011: Public comment for final round
- > 2012: October 2, NIST selected SHA3
 - Keccak (pronounced "catch-ack") created by Guido Bertoni, Joan Daemen and Gilles Van Assche, Michaël Peeters
The Sponge Construction: Used by SHA-3

- Each round, the next r bits of message is XOR' ed into the first r bits of the state, and a function f is applied to the state.
- After message is consumed, output r bits of each round as the hash output; continue applying f to get new states
- SHA-3 uses 1600 bits for state size

109

Choosing the length of Hash outputs

The Weakest Link Principle:

- A system is only as secure as its weakest link.
- Hence all links in a system should have similar levels of security.
- Because of the birthday attack, the length of hash outputs in general should double the key length of block ciphers
 - SHA-224 matches the 112-bit strength of triple-DES (encryption 3 times using DES)
 - SHA-256, SHA-384, SHA-512 match the new key lengths (128,192,256) in AES

for Authentication

- Require an authentic channel to transmit the hash of a message
 - Without such a channel, it is insecure, because anyone can compute the hash value of any message, as the hash function is public
 - Such a channel may not always exist
- How to address this?
 - use more than one hash functions
 - use a key to select which one to use

Hash Family

► A hash family is a four-tuple (X, Y, K, H), where

- X is a set of possible messages
- > Y is a finite set of possible message digests
- *K* is the keyspace
- For each $K \in K$, there is a hash function $h_K \in H$. Each $h_K : X \rightarrow Y$
- Alternatively, one can think of *H* as a function *K*×*X*→*Y*

Message Authentication Code

- A MAC scheme is a hash family, used for message authentication
- MAC(K,M) = $H_{K}(M)$
- The sender and the receiver share secret K
- The sender sends (M, H_k(M))
- The receiver receives (X,Y) and verifies that H_K(X)=Y, if so, then accepts the message as from the sender
- To be secure, an adversary shouldn't be able to come up with (X',Y') such that H_K(X')=Y'.

Security Requirements for MAC

- Resist the Existential Forgery under Chosen Plaintext Attack
 - Challenger chooses a random key K
 - Adversary chooses a number of messages M₁, M₂, ..., M_n, and obtains t_i=MAC(K,M_i) for 1≤j≤n
 - Adversary outputs M' and t'
 - ► Adversary wins if $\forall j M' \neq M_j$, and t'=MAC(K,M')
- Basically, adversary cannot create the MAC for a message for which it hasn't seen an MAC

Constructing MAC from Hash Functions

Let h be a one-way hash function

- MAC(K,M) = h(K || M), where || denote concatenation
 - Insecure as MAC
 - Because of the Merkle-Damgard construction for hash functions, given M and t=h(K || M), adversary can compute M' = M||Pad(M)||X and t', such that h(K||M') = t'

Cryptographic Hash Functions

 $HMAC_{K}[M] = Hash[(K^{+} \oplus opad) || Hash[(K^{+} \oplus ipad)||M)]]$

- K⁺ is the key padded (with 0) to B bytes, the input block size of the hash function
- ipad = the byte 0x36 repeated B times
- opad = the byte 0x5C repeated B times.

At high level, $HMAC_{K}[M] = H(K || H(K || M))$

HMAC Security

 If used with a secure hash functions (e.g., SHA-256) and according to the specification (key size, and use correct output), no known practical attacks against HMAC

Take home lessons

- Brute force against hash function for finding collision is 2^{m/2} where m is the output of the hash
- MD5 not secure as a cryptographic hash
- Recent attacks against SHA1 very strong
- The competition for a new hash function is over, SHA3 has been selected

5: Public key encryption and digital signatures

Readings for This Lecture

Required: On Wikipedia

- Public key cryptography
- ► <u>RSA</u>
- Diffie–Hellman key exchange
- ElGamal encryption

Required:

 Differ & Hellman: "New Directions in Cryptography" IEEE Transactions on Information Theory, Nov 1976.

Review of Secret Rey (Symmetric) Cryptography

Confidentiality

- stream ciphers (uses PRNG)
- block ciphers with encryption modes

Integrity

- Cryptographic hash functions
- Message authentication code (keyed hash functions)
- Limitation: sender and receiver must share the same key
 - Needs secure channel for key distribution
 - Impossible for two parties having no prior relationship
 - Needs many keys for n parties to communicate

Concept of Public Key Encryption

- ▶ Each party has a pair (K, K⁻¹) of keys:
 - ► K is the **public** key, and used for encryption
 - ► K⁻¹ is the **private** key, and used for decryption
 - Satisfies $D_{K^{-1}}[E_K[M]] = M$
- Knowing the public-key K, it is computationally infeasible to compute the private key K⁻¹
 - How to check (K,K⁻¹) is a pair?
 - Offers only computational security. Secure PK Encryption impossible when P=NP, as deriving K⁻¹ from K is in NP.
- The public-key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt
- Public-key systems aka asymmetric crypto systems
 122
 Cryptography

Public Key Cryptography Early History

- Proposed by Diffie and Hellman, documented in "New Directions in Cryptography" (1976)
 - 1. Public-key encryption schemes
 - 2. Key distribution systems
 - Diffie-Hellman key agreement protocol
 - 3. Digital signature
- Public-key encryption was proposed in 1970 in a classified paper by James Ellis
 - paper made public in 1997 by the British Governmental Communications Headquarters
- Concept of digital signature is still originally due to Diffie & Hellman

Cryptography

Public Key Encryption Algorithms

 Almost all public-key encryption algorithms use either number theory and modular arithmetic, or elliptic curves

RSA

based on the hardness of factoring large numbers

El Gamal

- Based on the hardness of solving discrete logarithm
- Use the same idea as Diffie-Hellman key agreement

Diffie-Hellman Key Agreement Protocol

Diffie-Hellman

Example: Let p=11, g=2, then

а	1	2	3	4	5	6	7	8	9	10	11
9 ^a	2	4	8	16	32	64	128	256	512	1024	2048
g ^a mod p	2	4	8	5	10	9	7	3	6	1	2

A chooses 4, B chooses 3, then shared secret is $(2^3)^4 = (2^4)^3 = 2^{12} = 4 \pmod{11}$

Adversaries sees 2^3 =8 and 2^4 =5, needs to solve one of 2^x =8 and 2^y =5 to figure out the shared secret.

Three Problems Believed to be Hard to Solve

- Discrete Log (DLG) Problem: Given <g, h, p>, computes a such that g^a = h mod p.
- Computational Diffie Hellman (CDH) Problem: Given <g, g^a mod p, g^b mod p> (without a, b) compute g^{ab} mod p.
- Decision Diffie Hellman (DDH) Problem: distinguish (g^a,g^b,g^{ab}) from (g^a,g^b,g^c), where a,b,c are randomly and independently chosen
- If one can solve the DL problem, one can solve the CDH problem. If one can solve CDH, one can solve DDH.

Assumptions

- DDH Assumption: DDH is hard to solve.
- CDH Assumption: CDH is hard to solve.
- DLG Assumption: DLG is hard to solve
- DDH assumed difficult to solve for large p (e.g., at least 1024 bits).
- Warning:
 - New progress by Joux means solving discrete log for p values with some property can be done quite fast.
 - Look out when you need to use/implement public key crypto
 - May want to consider Elliptic Curve-based algorithms

ElGamal Encryption

- Public key <g, p, h=g^a mod p>
- Private key is a
- To encrypt: chooses random b, computes C=[g^b mod p, g^{ab} * M mod p].
 - Idea: for each M, sender and receiver establish a shared secret g^{ab} via the DH protocol. The value g^{ab} hides the message M by multiplying it.
- To decrypt $C=[c_1,c_2]$, computes M where
 - $((c_1^a \mod p) * M) \mod p = c_2$.
 - To find M for x * M mod $p = c_2$, compute z s.t. x*z mod p = 1, and then M = C_2 *z mod p
- CDH assumption ensures M cannot be fully recovered.
- IND-CPA security requires DDH.

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

RSA Public Key Crypto System

Key generation:

 Select 2 large prime numbers of about the same size, p and q

Typically each p, q has between 512 and 2048 bits

- 2. Compute n = pq, and $\Phi(n) = (q-1)(p-1)$
- 3. Select e, 1<e< Φ(n), s.t. gcd(e, Φ(n)) = 1 Typically e=3 or e=65537
- 4. Compute d, $1 \le d \le \Phi(n)$ s.t. $ed \equiv 1 \mod \Phi(n)$ Knowing $\Phi(n)$, d easy to compute.

Public key: (e, n) Private key: d

RSA Description (cont.)

Encryption

 $\begin{array}{ll} \mbox{Given a message M, 0 < M < n } M \in Z_n\mbox{--} \{0\} \\ \mbox{use public key (e, n)} \\ \mbox{compute C = } M^e \mbox{ mod n} & C \in Z_n\mbox{--} \{0\} \end{array}$

Decryption

Given a ciphertext C, use private key (d) Compute C^d mod n = (M^e mod n)^d mod n = M^{ed} mod n = M

RSA Example

- ▶ p = 11, q = 7, n = 77, Φ(n) = 60
- d = 13, e = 37 (ed = 481; ed mod 60 = 1)
- Let M = 15. Then $C = M^e \mod n$

•
$$C \equiv 15^{37} \pmod{77} = 71$$

• $M \equiv C^d \mod n$

•
$$M \equiv 71^{13} \pmod{77} = 15$$

RSA Example 2

- Parameters:
 - p = 3, q = 5, n= pq = 15
 - ▶ Φ(n) = ?
- Let e = 3, what is d?
- Given M=2, what is C?
- How to decrypt?

Hard Problems RSA Security Depends on

 $C = M^e \mod (n=pq)$

Plaintext: M

Ciphertext: C

C^d mod n

- 1. Factoring Problem: Given n=pq, compute p,q
- 2. Finding RSA Private Key: Given (n,e), compute d s.t. ed = 1 (mod $\Phi(n)$).
 - Known to be equivalent to Factoring problem.
 - Implication: cannot share n among multiple users
- 3. RSA Problem: From (n,e) and C, compute M s.t. $C = M^{e}$
 - Aka computing the e' th root of C.
 - Can be solved if n can be factored

RSA Security and Factoring

- Security depends on the difficulty of factoring n
 - ▶ Factor $n \Rightarrow$ compute $\Phi(n) \Rightarrow$ compute d from (e, n)
 - ▶ Knowing e, d such that ed = 1 (mod $\Phi(n)$) ⇒ factor n
- The length of n=pq reflects the strength
 - > 700-bit n factored in 2007
 - 768 bit factored in 2009
- RSA encryption/decryption speed is quadratic in key length
- 1024 bit for minimal level of security today
 - likely to be breakable in near future
- Minimal 2048 bits recommended for current usage
- NIST suggests 15360-bit RSA keys are equivalent in strength to 256bit
- Factoring is easy to break with quantum computers
- Recent progress on Discrete Logarithm may make factoring much faster
 Cryptography

RSA Encryption & IND-CPA Security

- The RSA assumption, which assumes that the RSA problem is hard to solve, ensures that the plaintext cannot be fully recovered.
- Plain RSA does not provide IND-CPA security.
 - For Public Key systems, the adversary has the public key, hence the initial training phase is unnecessary, as the adversary can encrypt any message he wants to.
 - How to break IND-CPA security?

Real World Usage of Public Key Encryption

- Often used to encrypt a symmetric key
 - To encrypt a message M under an RSA public key (n,e), generate a new AES key K, compute [K^e mod n, AES-CBC_K(M)]
- One often needs random padding.
 - Given M, chooses random r, and generates F(M,r), and then encrypts as F(M,r) e mod n
 - From F(M,r), one should be able to recover M
 - This provides randomized encryption

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts are valid if they are signed.
- Signatures provide non-repudiation.
 - ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
- Can we have a similar service in the electronic world?
 - Does Message Authentication Code provide non-repudiation? Why?

Digital Signatures

- MAC: One party generates MAC, one party verifies integrity.
- Digital signatures: One party generates signature, many parties can verify.
- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) verification key, a message, and a signature

Provides:

Authentication, Data integrity, Non-Repudiation

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Strong collision resistant

RSA Signatures

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and Φ = (q 1)(p 1)
- Select a random integer e, 1 < e < Φ, s.t. gcd(e, Φ) = 1
- Compute d, $1 < d < \Phi$ s.t. $ed = 1 \mod \Phi$

Public key: (e, n)uPrivate key: d,u

used for verification used for generation

RSA Signatures with Hash (cont.)

Signing message M

- Verify 0 < M < n</p>
- Compute S = h(M)^d mod n

Verifying signature S

- Use public key (e, n)
- Compute S^e mod n = (h(M)^d mod n)^e mod n = h(M)

Non-repudiation

- Nonrepudiation is the assurance that someone cannot deny something. Typically, nonrepudiation refers to the ability to ensure that a party to a contract or a communication cannot deny the authenticity of their signature on a document or the sending of a message that they originated.
- Can one deny a signature one has made?
- Does email provide non-repudiation?

The Big Picture

	Secret Key Setting	Public Key Setting
Secrecy / Confidentiality	Stream ciphers Block ciphers + encryption modes	Public key encryption: RSA, El Gamal, etc.
Authenticity / Integrity	Message Authentication Code	Digital Signatures: RSA, DSA, etc.

Take home lessons

- RSA the most well-known PKI encryption and digital signature
- RSA is secure when used with proper key sizes 1024 bits and higher
- Digital certificates push entities to trust CAs
- If a CA is compromised certificates must be revoked

