Cristina Nita-Rotaru

CY2550: Foundations of Cybersecurity
Section 03

Authentication Module

Authentication

Authentication

Authentication

Definition:

Authentication is the process of verifying an actor’s identity

» Ciritical for security of systems

Permissions, capabilities, and access control are all contingent
upon knowing the identity of the actor

» Typically parameterized as a username and a secret

The secret attempts to limit unauthorized access

» Desirable properties of secrets include being unforgeable,
unguessable, and revocable

3 Authentication

Types of secrets

» Actors provide their secret to log-in to a system

» Three classes of secrets:
Something you know
Example:a password

Something you have

Examples: a smart card or smart phone

Something you are

Examples: fingerprint, voice scan, iris scan

4 Authentication

Password storage

Crypto

Attacker goals and threat model

» Assume we have a system storing usernames and
passwords

» The attacker has access to the password database/file

| wanna login to
those user

accounts!

Database

Cracked Passwords
p4ssWOrd jl> cbw p4ssWO0rd
sandi puppies

amislove 3spr3ss0 amislove 3spr3ss0

6 Authentication

Checking passwords

» System must validate passwords provided by users
» Thus, passwords must be stored somewhere
» Basic storage: plain text

password.txt

cbw p4sswOrd

sandi i heart doggies
amislove 93Gd9#jv*Ox3N
bob security

} 7 Authentication

Problem: Password file theft

» Attackers often compromise systems

» They may be able to steal the password file
Linux: /etc/shadow

Windows: c:\windows\system32\config\sam

» If the passwords are plain text, what happens?

The attacker can now log-in as any user; including
root/administrator

» Passwords should never be stored in plain text

8 Authentication

Hashed passwords

» Key idea: store hashed versions of passwords

Use one-way cryptographic hash functions
Examples: MD5, SHAI, SHA256,SHA512, berypt, PBKDF2, scrypt

» Cryptographic hash function transform input data into
scrambled output data

Deterministic: hash(A) = hash(A)

High entropy:
MD5(‘security’) = €91e6348157868de9dd8b25c81aebfb9
MD5(‘securityl’) = 8632c375e9eba096df51844a5a43ae93
MD5(‘Security’) = 2fae32629d4ef4fc634 11175 1b405e45

Collision resistant
Locating A’ such that hash(A) = hash(A’) takes a long time
Example: 22! tries for md5

9 Authentication

Hashed password example

User: cbw

‘ MD5(‘p4sswOrd’) =
2a9d119df47ff993b662a8ef36f9ea20

' ‘ MD5("2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed310d5134739292faa04f7ca3

hashed_passw xt

cbw 2a9d1 19df47ff993b662a8ef36f9ea20

sandi 23eb06699dal 6a3ee5003e5f4636e79f
amislove = 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

} 10 Authentication

Attacking password hashes

» Recall: cryptographic hashes are collision resistant
Locating A’ such that hash(A) = hash(A’) takes a long time
» Are hashed password secure from cracking?
No!

» Problem: users choose poor passwords
Most common passwords: 123456, password

Username: cbw, Password: cbw

» Weak passwords enable dictionary attacks

11 Authentication

Most common passwords

123456

password

12345678

qwerty
abc123
123456789
RERNN
1234567

O |00 | N[([o~ || M| W | DN

iloveyou

adobel23

)

12 Authentication

Dictionary attacks

English l

=1, List.of hashed_
Dictionary possible password.txt
password
) hashes
@F
i
Common
Passwords

» Common for 60-70% of hashed passwords to be cracked
in <24 hours

13 Authentication

Hardening password hashes

» Key problem: cryptographic hashes are deterministic
hash(‘p4sswO0rd’) = hash(‘p4sswOrd’)

This enables attackers to build lists of hashes

» Solution: make each password hash unique
Add a random salt to each password before hashing
hash(salt + password) = password hash
Each user has a unique, random salt
Salts can be stores in plain text

Salts should be as big as the output of the hash function

14 Authentication

Example salted hashes

hashed_password.txt

cbw 2a9d 1 19df47ff993b662a8ef36f9ea20 "’
sakib 23eb06699dal 6a3ee5003e5f4636e79f

amislove 98bd0ebb3c3ec3fbe21269a8d840127c User: cbw
bob e91e6348157868de9dd8b25c8|aebfb9

hashed_and_salted_password.txt

MD5(‘a8’ + ‘p4sswOrd’) =
af19c842f0c781ad726de7
aba439b033

cbw a8 af19c842f0c781ad726de7aba439b033
sakib 0X 67710c2c2797441efb8501f063d42fb6é
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2cé |8fed89c245

} 15 Authentication

Attacking salted passwords

List of hashed
possible and_salted
password password.txt

List of

I ¢ Possible ¢ sakib YYYY
h password
hashes w/

salt 0X

16 Authentication

Breaking hashed passwords

» Stored passwords should always be salted
Forces the attacker to brute-force each password individually

» Problem: it is now possible to compute hashes very
quickly
GPU computing: hundreds of small CPU cores
nVidia GeForce GTXTitan Z: 5,760 cores

GPUs can be rented from the cloud very cheaply
$0.9 per hour (2018 prices)

17 Authentication

Examples of hashing speed

» A modern x86 server can hash all possible 6 character
long passwords in 3.5 hours

Upper and lowercase letters, numbers, symbols
(26+26+10+32)¢ = 690 billion combinations
» A modern GPU can do the same thing in |6 minutes

» Most users use (slightly permuted) dictionary words, no
symbols
Predictability makes cracking much faster
Lowercase + numbers = (26+10)® = 2B combinations

18 Authentication

Hardening salted passwords

» Problem: typical hashing algorithms are too fast
Enables GPUs to brute-force passwords

» Old solution: hash the password multiple times
Known as key stretching
Exameple: crypt used 25 rounds of DES

» New solution: use hash functions that are designed to be
slow
Examples: berypt, PBKDF2, scrypt

These algorithms include a work factor that increases the time
complexity of the calculation

scrypt also requires a large amount of memory to compute,
further complicating brute-force attacks

19 Authentication

bcrypt example

[cbw@localhost ~] python Work factor

>>>
>>>
>>>
>>>
>>>
>>>

bcrypt
password =
fast_hashed crypt.hashpw(password, bc ypt.gensalt(0))
slow_hashed crypt.hashpw(password, bc.ypt.gensalt(12))
pw_from_user = ¢),
bcrypt.hashpw(pw_from_user, slow_hashed) ==

slow_hashed:

Authentication

Dealing with breaches

» Suppose you build an extremely secure password storage
system

All passwords are salted and hashed by a high-work factor
function

» It is still possible for a dedicated attacker to steal and
crack passwords

Given enough time and money, anything is possible
E.g. The NSA

» Question: is there a principled way to detect password
breaches!?

21 Authentication

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
As usual, users create a single password and use it to login

User is unaware that additional honeywords are stored with their
account

» Implement a honeyserver that stores the index of the correct
password for each user

Honeyserver is logically and physically separate from the password
database

Silently checks that users are logging in with true passwords, not
honeywords

» What happens after a data breach!?
Attacker dumps the user/password database...
But the attacker does not know which passwords are honeywords
Attacker cracks all passwords and uses them to login to accounts
If the attacker logs-in with a honeyword, the honeyserver raises an alert!

22 Authentication

Honeywords example

Cracked Passwords

User PW | PW 2 PW 3

cbw 123456 [p4ssWO0rd Turtles!
cbw ‘sandi puppies iloveyou
SHA512(“fI” | “p4ssWOrd”) > bHDJ8| amislove coff33 qwerty

Database

il i) i

y4DvF7 HDJ8I 52 Puu2s7

sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk -
amislove 9j OF3g5H Is 03d5jW | <V IsRbJ5

} 23 Authentication

Password storage summary

I. Never store passwords in plain text

2. Always salt and hash passwords before storing
them

3. Use hash functions with a high work factor

» These rules apply to any system that needs to
authenticate users
Operating systems, websites, databases, etc.

24 Authentication

Password recovery and reset

Authentication

Password recovery/reset

» Problem: hashed passwords cannot be recovered
(hopefull

“Hi... | forgot my password. Can
you email me a copy? Kthxbye”

* This is why systems typically implement password reset
— Use out-of-band info to authenticate the user
— Overwrite hash(old_pw) with hash(new_pw)

* Be careful: it is possible for an attacker to exploit
password reset

26 Authentication

Knowledge-based reset

» Typical implementations use Knowledge Based
Authentication (KBA)
What was your mother’s maiden name!?
What was your prior street address!?
Where did you go to elementary school

» Problems?
This information is widely available to anyone

Publicly accessible social network profiles
Background-check services like Spokeo

» Experts recommend that services not use KBA

When asked, users should generate random answers to these
questions

27 Authentication

Account-based reset

» ldea: authenticate a user by sending a code to their
contact address

Typically e-mail address or phone number

» Security rests on the assumption that the person’s
contact address is also secure

E-mail account takeover
SIM hijacking

28 Authentication

Challenges of password reset

» Password reset mechanisms are often targeted and are
quite vulnerable
» Best practice: implement a layered mechanism
Knowledge-based
Secondary account
Second factor authentication: biometric or tokens
» Warning: more secure = less usable

Password loss is common, people will be frustrated by onerous
reset mechanisms

29 Authentication

Password cracking

Crypto

Attacker goals and threat model

» Assume we have a system storing usernames and

passwords

» The attacker has access to the password datab

Database
% H(PW)
cbw iuafNas
sandi 23asZR

amislove IxgGw/

31

| wanna login to
those user
accounts!

Cracked Passwords

: cbw p4ssWO0rd

sandi

puppies
amislove 3spr3ss0

Authentication

Basic password cracking

» Problem: humans are terrible at generating/remembering
random strings

» Passwords are often weak enough to be brute-forced

Naive way: systematically try all possible passwords
Slightly smarter way: take into account non-uniform distribution of
characters
» Dictionary attacks are also highly effective
Select a baseline wordlist/dictionary full of likely passwords
Today, the best wordlists come from lists of breached passwords
Rule-guided word mangling to look for slight variations

E.g. password = Password = p4ssword = passwOrd = p4sswOrd -
password| = etc.

» Many password cracking tools exist (e.g. John the Ripper,
hashcat)

32 Authentication

“Deep Crack” The EFF DES Cracker

» DES uses a 56-bit key

» $250K in 1998, capable of
brute-forcing DES keys in
56 hours

Uses 1856 custom ASIC
chips
» Similar attacks have been
demonstrated against

e . - b i § “r‘h—ﬁ-_‘y,-‘
= ¢ W A e
: 1‘ s ‘“" “E : !‘1‘\!‘ “‘,I HHH 8 ih
’ e TR T AL

» Modern equivalent?

Bitcoin mining ASICs

33 Authentication

Speeding up brute-force cracking

» Brute force attacks are slow because hashing is CPU
Intensive

Especially if a strong function (SHAS512, berypt) is used
» ldea: why not pre-compute and store all hashes?

You would only need to pay the CPU cost once...

... for a given salt

» Given a hash function H, a target hash h, and password
space P, goal is to recover p € P such that H(p) = h

» Problem: naive approach requires O(|P|n) bits, where n is
the space of the output of H

34 Authentication

Hash chains

» Hash chains enable time-space efficient reversal of hash functions

» Key idea: pre-compute chains of passwords of length k...
... but only store the start and end of each chain
Larger k = fewer chains to store, more CPU cost to rebuild chains
Small k = more chains to store, less CPU cost to rebuild chains

» Building chains require H, as well as a reduction R:H ~ P
Begin by selecting some initial set of password P’ c P
For each p’ € P’,apply H(p') = h',R(h") = p"’ for k iterations
Only store p’ and p'*
Example of R -- take only the first 8 characters of the hash output

» To recover hash h, apply R and H until the end of a chain is found
Rebuild the chain using p’ and p'*
H(p) = h may be within the chain

35 Authentication

Uncompressed hash chain example

Only these two
columns get stored on

disk

R(h’) — p” H(p”) — h” R(h”) — p”’ H(p”’) — h”’ R(h”’) — p*

\WVPNP_ visfqp _QOZLR CMRQ5X
VZDGEF gfnxsk ZLGEKV yookol EBOTHT
SM-QK\9 sawtzg RHKP_D gvmdwm BYE4LB
OKFTaY btweoz WA 5HK ttgovl Q_4\6ZB

cjldar

eusrqv

ZVXSCS

wijizbn

} 36 Authentication

Hash chain example

abcde cjldar * Size of the table is dramatically
passw Zvxscs reduced...

12345 K=3

secrt eivlqc

* ... but some computation is necessary
once a match is found

HPE)=h R(W)= HE”)= RM)= HE”)= R{”)=
p” h” p”’ h”’ p*
12345 1 wiizbn
P HE=h RM=p HE)=h RM)=p" HE)=h" RE)=p" HE™)=h"
RHKP D

Desired password Hash to recover

} 37 Authentication

Problems with hash chains

» Hash chains are prone to collisions

Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is
more likely)

Causes the chains to merge or overlap

» Problems caused by collisions

Wasted space in the file, since the chains cover the same password
space

False positives: a chain may not include the password even if the end
matches

» Proper choice of R() is critical
Goal is to cover likely password space, not entire password space

R cannot be collision resistant (like H) since it has to map into likely
plaintexts

Difficult to select R under this criterion o
38 Authentication

Rainbow tables

» Rainbow tables improve on hash chains by reducing the
likelihood of collisions
» Key idea: instead of using a single reduction R, use a family
of reductions {R,,R,, ... ,R;}
Usage of H is the same as for hash chains

A collisions can only occur between two chains if it happens at
the same position (e.g. R; in both chains)

39 Authentication

Rainbow tables

» Caveats
Tables must be built for each hash function and character set
Salting and key stretching defeat rainbow tables

» Rainbow tables are effective in some cases, e.g. MD5 and
NTLM (Microsoft authentication)

Precomputed tables can be bought or downloaded for free

40 Authentication

Choosing passwords

Authentication

Password quality

S = log, N*

» How do we measure password quality? Entropy (captures
unpredictability)

N — the number of possible symbols (e.g. lowercase, uppercase,
numbers, etc.)

L — the length of the password
$ — the strength of the password, in bits
» Formula tells you length L needed to achieve a desired
strength S...

.. for passwords

» Is this a realistic measure in practice?
42 Authentication

Strength of random passwords

S=1L xlog,N

200 26+26+10 Characters

| 75 Very
— 150 26+26 Characters Strong
2 |25
A 00 =26 Characters
< 75
5 5
g 25 Very
v 0 Weak

0 5 |10 |5 20 25 30 35

Password Length (Characters)

43 Authentication

Mental algorithms

» Years of security advice have trained people to generate
“secure” passwords

Pick a word
Capitalize the first or last letter
Add a number (and maybe a symbol) to the beginning or end

Pick a word

Replace some of the letters with symbols (a 2 @,s 2 $,
etc.)

Maybe capitalize the first or last letter

44 Authentication

Human generated passwords

Password

Computer3@
cl4ssrO0m
7Dogsled*
Tjw1989&6
B4nk0f4m3r| c4!

* Modern attackers are sophisticated
* No need for brute force cracking!
* Use dictionaries containing common words and passwords from prior leaks
* Apply common “mental” permutations

45 Authentication

Percent Guessed

basic12
comp8

ooz

50% -

Password Requirements

« comp n and basic n: use at
least n characters

40% =

 kword n: combine at least k
words using at least n
characters

w

S

X
1

20% -

» dclass n: use at least d
character types (upper, lower,
digit, symbol) with at least n
characters

gBclass16

10% =

0% -

T
10° 10° 10° 10"
Guess Number Plot from Shay et al.
https://www.blaseur.com/papers/tissec_1026.pdf

46 Authentication

Better heuristics

» Notice thatin S = L * log, N, length matters
more than symbol types

Choose longer passwords (16+ characters)
Do not worry about uppercase, digits, or symbols

» Use mnemonics
Choose a sentence or phrase
Reduce it to the first letter of each word
Insert random uppercase, digits, and symbols

| double dare you, say “what” one more time
i2Dy,s”’w”’omt

47

Authentication

48

O0ooonoooopoooaa 0

(N&NC%&%E‘H , OROER goooooog TROUBADOR. AND ONE OF
S THE Os WAS A ZERQ?
%ﬁ mRD UNKNO\JN _]— y_‘J\‘ 111] \ “
W;; - AND THERE' WAS
= 3 DAYS AT SOME SYMBOL...
Tr@u b4d or &3 1000 GUESEES sc
(et e
CAPS? COMMON N(MERF\L M 13 FRSTER, BUT na'i‘m whaT THE
a SUBSTITUTTONS ooo PIRRAGE VSR SCDwotey foaT)
ooog PONCTUATION DIFRCOLTY 10 GUESS: | | DIFFICOLTY TO REMEMBER:
o o EASY HARD
15 ONLY ONE OF A FEW CoMMON FORMATS)

WAS (T TROMBONE? NO,

COMMON WORDS

correct horse ba’cterg staple

,,,,, T__J
,]W u J_V_]—’ tij—f.ﬁ‘.—f_] opoanon
.,JL][_]L, [:—hj:i;. ooaan 10000
!
FOUR RAaNDOM

~ HH BITS OF ENTROPY
Ooo0ooooapoooa
OnoOo0ogooooon
aoaoaopaadc

pooogoooaoao

2™ =550 YEARS AT
1000 GUESSES/SEC

DIFhICOLTY T0 GUESS:

HARD

DIFFICOLTY TO REMEMBER:
YOU'VE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE' PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Authentication

Password reuse

» People have difficulty remembering >4 passwords
Thus, people tend to reuse passwords across services
What happens if any one of these services is compromised?

» Service-specific passwords are a beneficial form of
compartmentalization

Limits the damage when one service is inevitably breaches

» Use a password manager

» Some service providers now check for password reuse

Forbid users from selecting passwords that have appeared in
leaks

49 Authentication

LastPasse«ss] QA

Sites

Favorites v

GEVERNOTE

Evernote

Banking and Finance v

Bank of America 2>

Bank of America

50

Search your vault

amazoncom

Amazon

facebook

Facebook

Fidelity

Fidelity

a2 | EfE

Sort By: Folder (a-2) ~

Best Buy /% 8 Dropbox
o pocket twitter
Pocket Twitter

»mint

@

Authentication

@ Have | Been Pwned (Troy Hunt) [AU] | https://haveibeenpwned.com w B ©
- s | ® @ T T Upshot [Jcooking 3 @ & [(A « v 8 2T O = & B [WHomepage @ M B |[& & O O | shack

Home Notifyme Domainsearch Who's been pwned Passwords APl About Donate B P

'*--have i been pwned?

Check if you have an account that has been compromised in a data breach

email address or username pwned?

264 4,859,717,682 61,081 59,268,789

pwned websites pwned accounts pastes paste accounts

51 Authentication

Biometric two-factor authentication

Authentication

Types of Secrets

» Actors provide their secret to log-in to a system

» Three classes of secrets:
Something you know
Example: a password

Something you have

Examples: a smart card or smart phone

Something you are

Examples: fingerprint, voice scan, iris scan

53 Authentication

Biometrics

» ancient Greek: bios ="life", metron ="measure*

» Physical features
Fingerprints
Face recognition
Retinal and iris scans
Hand geometry

» Behavioral characteristics
Handwriting recognition
Voice recognition
Typing cadence
Gait

54 Authentication

Fingerprints

» Ubiquitous on modern smartphones,
some laptops

» Secure!

May be subpoenaed by law
enforcement
Relatively easy to compromise
Pick up a latent fingerprint (e.g. off a
glass) using tape or glue
Photograph and enhance the fingerprint

Etch the print into gelatin backed by a
conductor

Profit ;)

55 Authentication

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Facial recognition

» Popularized by FacelD on the iPhone X

» Secure!
It depends

» Vulnerable to law enforcement requests
» Using 2D images!?
Not secure
Trivial to break with a photo of the target’s
face
» Using 2D images + 3D depth maps?
More secure, but not perfect

Can be broken by crafting a lifelike mask of

the target
56 Authentication

Specially processed area

2D images
- Silicone nose

3D printed frame -

57 Authentication

Voice recognition

» Secure!
Very much depends on the implementation

» Some systems ask you to record a static phrase
E.g. say “unlock” to unlock
This is wildly insecure
Attacker can record and replay your voice
» Others ask you to train a model of your voice
Train the system by speaking several sentences

To authenticate, speak several randomly chosen
words

Not vulnerable to trivial replay attacks, but still
vulnerable

Given enough samples of your voice, an attacker can
train a synthetic voice Al that sounds just like you

58

"Ok Google" Trusted Voice

Trusted voice is less secure than
a pattern, PIN, or password.
Someone with a similar voice or a
recording of your voice could
unlock your device

CANCEL OK

Authentication

Fundamental issue with biometrics

» Biometrics are immutable
You are the password, and you cannot change
Unless you plan on undergoing plastic surgery?
» Once compromised, there is no reset
Passwords and tokens can be changed
» Example: the Office of Personnel Management (OPM)
breach
US gov agency responsible for background checks
Had fingerprint records of all people with security clearance
Breached by China in 2015, all records stolen :(

59 Authentication

Token based two-factor authentication

Crypto

Types of Secrets

» Actors provide their secret to log-in to a system

» Three classes of secrets:
Something you know
Example: a password

Something you have

Examples: a smart card or smart phone

Something you are

Examples: fingerprint, voice scan, iris scan

61 Authentication

Something you have

» Two-factor authentication has become more
commonplace
» Possible second factors:

SMS passcodes
Time-based one time passwords
Hardware tokens

62 Authentication

SMS two factor

» Relies on your phone number as the second
factor

Key assumption: only your phone should receive
SMS sent to your number

» SMS two factor is deprecated. Why!? B e ma

» Social engineering the phone company
Call and pretend to be the victim
Say “l got a new SIM, please activate it”

If successful, phone calls and SMS are now sent
to your SIM in your phone, instead of the
victim
» Not hypothetical: successfully used against
many victims

63 Authentication

One time passwords

» Generate ephemeral
passcodes that change over
time

» To login, supply normal

password and the current
one time password

» Relies on a shared secret
between your mobile device
and the service provider

Shared secret allows both
parties to know the current
one time password

64

¥4 k1035

ACME INC

Changes QAUTHY
every few
minutes

6333932

Duo Mobile

Lastpass Authenticato

Google Authenticator

Authentication

Time-based one-time password algorithm

T0 = <the beginning of time, typically Thursday, | January
1970 UTC>

Tl = <length of time the password should be valid>

K = <shared secret key>
d = <the desired number of digits in the password>

TC = floor((unixtime(now) — unixtime(T0)) / Tl),
TOTP = HMAC(K, TC) % 10¢

Given K this algorithm can

Specially formatted
SHA | -based signature

be run on your phone and by
the service provider

65 Authentication

Secret sharing for TOTP

Enable Two-Step Sign in

An authenticator app generates the code automatically on your smartphone. Free apps are
available for all smartphone platforms including iOS, Android, Blackberry and Windows. Look for an
app that supports time-based one-time passwords (TOTP) such as Google Authenticator or Duo
Mobile.

To set up your mobile app, add a new service and scan the QR code.

If you can't scan the code, enter this secret key manually: fvxo = s s me a

USE SMS INSTEAD

66 Authentication

Hardware two factor

» Special hardware designed to hold
cryptographic keys

» Physically resistant to key extraction
attacks

E.g. scanning tunneling electron
microscopes

» Uses:
2" factor for OS log-on
2nd factor for some online services

2" factor for password manager
Storage of PGP and SSH keys

67

Authentication

Universal 274 Factor (U2F)

Goodgl
» Supported by Chrome, Opera, and orgE

Firefox 2-Step Verification

Use your device to sign in to your Google Account.

Insert your Security Key

» Works with Google, Dropbox,
Facebook, Github, Gitlab, etc.

» Pro tip: always buy 2 security keys
Associate both with your accounts If your Security Key has a button, tap it

. . If it doesn't, remove and re-insert it.
Keep one locked in a safe, in case you lose
your primary key ;)

¥/ Remember this computer for 30 days

68 Authentication

Authentication in Linux

Crypto

Status check

» At this point, we have discussed:
How to securely store passwords
Techniques used by attackers to crack passwords

Biometrics and 2" factors

» Next topic: building authentication systems

Given a user and password, how does the system authenticate
the user?

How can we perform efficient, secure authentication in a
distributed system!?

70 Authentication

Authentication in Unix/Linux

» Users authenticate with the system by interacting with
login
Prompts for username and password
Credentials checked against locally stored credentials
» By default, password policies specified in a centralized,
modular way

On Linux, using Pluggable Authentication Modules (PAM)

Authorizes users, as well as environment, shell, prints MOTD,
etc.

71 Authentication

Example PAM Configuration

cat /etc/pam.d/system—auth
%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so

account optional pam_permit.so e Use SHAS512 as the hash function
account required pam_time.so

* Use /etc/shadow for storage

password required pam_unix.so try_first
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

72 Authentication

Unix Passwords

» Traditional method: crypt
First eight bytes of password used as key (additional bytes are
ignored)
| 2-bit salt
25 iterations of DES on a zeroed vector

» Modern version of crypt are more extensible

Full password used

Up to |6 bytes of salt

Support for additional hash functions like MD5, SHA256, and
SHASI2

Key lengthening: defaults to 5000 iterations, up to 10 — |

Authentication

Password files

» Password hashes used to be in /etc/passwd

World readable, contained usernames, password hashes, config
information

Many programs read config info from the file...
But very few (only one?) need the password hashes

» Turns out, world-readable hashes are Bad Idea
» Hashes now located in /etc/shadow

Also includes account metadata like expiration
Only visible to root

Authentication

Password storage on Linux

letc/passwd

username:x:UID:GID:full_name:home_directory:shell

chw-1001-1000-Chricto Wilson:/home/cbw/:/bin/bash
$<algo>$<salt>$<hash> 1 Mislove:/home/amislove/:/bin/sh
Algo: | = MD5,5 = SHA256, 6 =

SHAS 12 etc/shadow

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000:::
amislove:$ | $I3RxUS5F1$:8172:0:10000::::

} 75 Authentication

Distributed authentication

Crypto

Distributed authentication

» Early on, people recognized the need for authentication in
distributed environments

Example: university lab with many workstations

Example: file server that accepts remote connections

» Synchronizing and managing password files on each
machine is not scalable

|deally, you want a centralized repository that stores policy and
credentials

77 Authentication

The Yellow Pages

» Network Information Service (NIS), a.k.a. the Yellow
Pages
Developed by Sun to distribute network configurations
Central directory for users, hostnames, email aliases, etc.
Exposed through yp* family of command line tools

» For instance, depending on /etc/nsswitch.conf, hostname
lookups can be resolved by using
letc/hosts
DNS
NIS

» Superseded by NIS+, LDAP

78 Authentication

NIS Password Hashes

* Crypt based password hashes
* Can easily be cracked
* Many networks still rely on insecure NIS

[cbw@workstation ~] ypcat passwd
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune: /bin/bash
philowe:T.yUMej3XSNAM:13503:65104:: /home/philowe:/bin/bash
bratus:2omkwsYXWilLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118: : /home/adkap:/bin/zsh
amitpoon:13LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA06wxjJEUgBE:13055:65101: : /home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
ppkk315:s6CTSAkqqr/nU: 14061:65101::/home/ppkk315:/bin/bash
haynesma:JYWaQUARSQDQE:14287:65105:: /home/haynesma: /bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNel8GpeQj.:13682:65104::/home/sushma:/bin/bash
guerinl:n@Da2TmO9MDBI:14512:65105::/home/guerinl:/bin/bash

79

Distributed authentication revisited

» Goal:a user would like
to use some resource on

the network Auth Server
File server, printer, @

database, mail server, etc. cbw

» Problem: access to Q
. Database
resources requires
e F

authentication

Auth Server contains all
credential information

You do not want to
replicate the credentials

on all services
80 Authentication

Attacker goals and threat model

» Goal: steal
credentials and gain
access to protected Auth Server
resources @

» Local attacker — may

spy on traffic Q
Database
» Active attacker —
et
may send messages =
» In some cases, may
be able to steal | wanna access the
information from Database too ;)

users

81 Authentication

(Bad) Distributed Auth Example

» ldea: client forwards]
ooks good!
user/password to service,

service queries Auth Server Auth ierver

» Problems:
cbw

U
cbw:p4sswOrd
Database learns about

passwo rds cbw:p4sswOrd w

Additional point of compromise

Passwords being sent in the
clear

Attacker can observe them!

Clearly we need encryption

Please verify
cbw:p4sswOrd

|deally, only the user and the
Auth Server should know their

82 passwo I'Cl Authentication

Reflection attack example

» A and B authenticate to each other, authentication comes from
knowing the secret key K, rp, rg are random numbers (nounces)

(DA — B:ra

(2) B — A:E(ra, rp)

(3)A—B:rg

» Attack: E wants to trick A to accept them as B, thus needs to
obtain something like E,(ra, ry), where r, was selected by A, and
r, can be selected by E, without knowing secret key K

(DA —E:rp

(2) E — A :rp : Starting a new session, note that here E is the initiator

(3) A — E:E.(ra, ra) : Reply of (2)

(4) E— A :E/(ra ra) : Reply of (1)

(5) A — E :rp; this concludes session started with (1)

83 Authentication

Interleaving attack example

» A and B authenticate to each other based on their secret keys
used for digital signature

(DA —>B:rp

(2) B — A :rg, Sp(rp, ra,A)

(3) A — B :ra, Sa(ra, e, B)

» Attack: E wants to pass as A to B without knowing A’s private key,
so E needs to get A to sign a message
(HDE—B:ry
(2) B — E :rg, Sg(rg, ra,A) E can not finish now, needs A to sign something
(1) E— A :rg E starts a parallel session with A
(2)A — E :rp, Sa(ras re, B) this is what E needs for the session with B
(3) E— B :rp, Sa(ras, re, B) E can complete the session with B

84 Authentication

Needham-Schroeder Protocol

Let Alice A and Bob B be two parties that trust server S

Kssand Kz are shared secrets between [A, S] and [B, S]

K,z is 2 negotiated session key between [A, B]

N;and N, are random nonces generated by A and B

1) A RN S: A’ B’ Ni Kas is not sent in the clear, authenticates S and A

2) § = A:{N;, Ky, B, {KAB»A}KBS}KAS

9 4~ B: (Kno, A}~ N——

4) B - A:{IV]'}KA
5) A- B{]VJ — 1}KAB

Challenge nonce forces A to acknowledge they have Kz

85 Authentication

Needham-Schroeder Example

{N i» Kebw-db» db, {K cow-dbs CbW}de}K

cbw

1) A - S:A,B,N,

2) § -
A: {N;, K3, B, {KAB'A}KBS}KAS

3) A - B: {KAB’A}KBS ﬁ cbw
cbw
4) B — A: {IV].}KAB ﬁb o

VA= B D

Auth ervﬁ bw

Sa

Database
Fho

ﬁ;bw-db

86 Authentication

Attacking Needham-Schroeder

Spoof the client request

° ' k3 M
Fail! Client key is needed to {N;, Kebw-dor db, {Kcow-dor COWhe, Jc
decrypt

cbw

Spoof the Auth Server response chbw Auth Serve
ﬁ;bw

Sa

Database
P

Fail! Need to know the client key P;bw

Spoof the client-server
interaction

Fail! Need to know the databasm
key
Replay the client-server ﬁ;v“ W ! ﬁbw-db

Inter {Ni, Keyir db, {Key {Keow-ab CbW}de
87 Authentication

Fail! Need to know the session
key

1)
2)
3)
4)
5)

Replay Attack

A- S:AB

Typical, Benign Protocol Replay Attack

s ainfurt [l 20— w0y,

A - B:{Kyp, A}k

B = A:{Nj}kyp
A - BN, — 1},

* Attacker must hack A to steal K,z

* So the attacker can also steal Kxg

* However, what happens after A changes K ¢

88

* Attacker can still conduct the replay attack! Only K,g is necessary!

.Z) M - B: {KAB’A}KBS

3) M - B:{N; — 1},

Authentication

Fixed Needham-Schroeder Protocol

Let Alice A and Bob B be two parties that trust server S

K45 and Kjq are shared secrets between [A, S] and [B, §]

K,z is 2 negotiated session key between [A, B]

N;and N, are random nonces generated by A and B

T is a timestamp chosen by §

1 A-S:AB,N,
2) S - A: {NiJ KAB' B» {KABJAJ T}KBS}KAS

3) A - B: {KABJ A, T}KBS B only accepts requests
with fresh timestamps
4) B — A: {IV]'}KAB

5)A_)B{1V]_1}KAB

89 Authentication

Kerberos

» Created as part of MIT Project Athena
Based on Needham-Schroeder

» Provides mutual authentication over untrusted networks
Tickets as assertions of authenticity, authorization
Forms basis of Active Directory authentication
» Principals
Client
Server

Key distribution center (KDC)
Authentication server (AS)
Ticket granting server (TGS)

90

Kerberos Example

{wa’ chw-tgs}Kwa ’TGT

&ir o cbw
cbw Q'D,
VZ

bw-tgs
f;bW'db {chw-db}de’ {CbW, T}chw_ Data base
db
cbw-db

} 91 Authentication

Attacking Kerberos

» Don’t put all your eggs in one basket

The Kerberos Key Distribution Server (KDS) is a central point
of failure

DoS the KDS and the network ceases to function
Compromise the KDS leads to network-wide compromise

» Time synchronization
Inaccurate clocks lead to protocol failures (due to timestamps)

Solution?
Use NTP ;)

92

Sources

I. Many slides courtesy of Wil Robertson:

2. Honeywords,Ari Juels and Ron Rivest:

» For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent work of
Blas Ur:

93 Authentication

https://wkr.io/
http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf
http://www.blaseur.com/pubs.htm

