
Cristina Nita-Rotaru

CY2550: Foundations of Cybersecurity
Section 03

Authentication Module

Authentication

Authentication

Authentication

Definition:
Authentication is the process of verifying an actor’s identity

} Critical for security of systems
} Permissions, capabilities, and access control are all contingent

upon knowing the identity of the actor

} Typically parameterized as a username and a secret
} The secret attempts to limit unauthorized access

} Desirable properties of secrets include being unforgeable,
unguessable, and revocable

Authentication3

Types of secrets

} Actors provide their secret to log-in to a system
} Three classes of secrets:

1. Something you know
} Example: a password

2. Something you have
} Examples: a smart card or smart phone

3. Something you are
} Examples: fingerprint, voice scan, iris scan

Authentication4

Password storage

Crypto

Attacker goals and threat model

} Assume we have a system storing usernames and
passwords

} The attacker has access to the password database/file

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

Cracked Passwords

Database

I wanna login to
those user
accounts!

Authentication6

Checking passwords

} System must validate passwords provided by users
} Thus, passwords must be stored somewhere
} Basic storage: plain text

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt

Authentication7

Problem: Password file theft

} Attackers often compromise systems
} They may be able to steal the password file

} Linux: /etc/shadow
} Windows: c:\windows\system32\config\sam

} If the passwords are plain text, what happens?
} The attacker can now log-in as any user, including

root/administrator

} Passwords should never be stored in plain text

Authentication8

Hashed passwords

} Key idea: store hashed versions of passwords
} Use one-way cryptographic hash functions
} Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

} Cryptographic hash function transform input data into
scrambled output data
} Deterministic: hash(A) = hash(A)
} High entropy:

} MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
} MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
} MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

} Collision resistant
} Locating A’ such that hash(A) = hash(A’) takes a long time
} Example: 221 tries for md5

Authentication9

Hashed password example

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Authentication10

Attacking password hashes

} Recall: cryptographic hashes are collision resistant
} Locating A’ such that hash(A) = hash(A’) takes a long time

} Are hashed password secure from cracking?
} No!

} Problem: users choose poor passwords
} Most common passwords: 123456, password
} Username: cbw, Password: cbw

} Weak passwords enable dictionary attacks

Authentication11

Most common passwords

Rank 2013 2014 2020 2022

1 123456 123456 123456. 123456

2 password password 123456789. 123456789

3 12345678 12345 Picture1. Qwerty

4 qwerty 12345678 Password. Password

5 abc123 qwerty 12345678. 12345

6 123456789 123456789 111111. 12345678

7 111111 1234 123123. | | | | | | |

8 1234567 baseball 12345 1234567

9 iloveyou dragon 1234567890

10 adobe123 football senha

Authentication12

Dictionary attacks

} Common for 60-70% of hashed passwords to be cracked
in <24 hours

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

Authentication13

Hardening password hashes

} Key problem: cryptographic hashes are deterministic
} hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
} This enables attackers to build lists of hashes

} Solution: make each password hash unique
} Add a random salt to each password before hashing
} hash(salt + password) = password hash
} Each user has a unique, random salt
} Salts can be stores in plain text
} Salts should be as big as the output of the hash function

Authentication14

Example salted hashes

cbw a8 af19c842f0c781ad726de7aba439b033
sakib 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sakib 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

MD5(‘a8’ + ‘p4ssw0rd’) =
af19c842f0c781ad726de7

aba439b033

Authentication15

Attacking salted passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sakib 0X

hash(‘0X’ + word)
cbw XXXXsakib YYYY

Authentication16

Breaking hashed passwords

} Stored passwords should always be salted
} Forces the attacker to brute-force each password individually

} Problem: it is now possible to compute hashes very
quickly
} GPU computing: hundreds of small CPU cores
} nVidia GeForce GTX Titan Z: 5,760 cores
} GPUs can be rented from the cloud very cheaply

} $0.9 per hour (2018 prices)

Authentication17

Examples of hashing speed

} A modern x86 server can hash all possible 6 character
long passwords in 3.5 hours
} Upper and lowercase letters, numbers, symbols
} (26+26+10+32)6 = 690 billion combinations

} A modern GPU can do the same thing in 16 minutes
} Most users use (slightly permuted) dictionary words, no

symbols
} Predictability makes cracking much faster
} Lowercase + numbers à (26+10)6 = 2B combinations

Authentication18

Hardening salted passwords

} Problem: typical hashing algorithms are too fast
} Enables GPUs to brute-force passwords

} Old solution: hash the password multiple times
} Known as key stretching
} Example: crypt used 25 rounds of DES

} New solution: use hash functions that are designed to be
slow
} Examples: bcrypt, PBKDF2, scrypt
} These algorithms include a work factor that increases the time

complexity of the calculation
} scrypt also requires a large amount of memory to compute,

further complicating brute-force attacks
Authentication19

bcrypt example

} Python example; install the bcrypt package
[cbw@localhost ~] python
>>> import bcrypt
>>> password = “my super secret password”

>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) ==
slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

Authentication20

Dealing with breaches

} Suppose you build an extremely secure password storage
system
} All passwords are salted and hashed by a high-work factor

function

} It is still possible for a dedicated attacker to steal and
crack passwords
} Given enough time and money, anything is possible
} E.g. The NSA

} Question: is there a principled way to detect password
breaches?

Authentication21

Honeywords
} Key idea: store multiple salted/hashed passwords for each user

} As usual, users create a single password and use it to login
} User is unaware that additional honeywords are stored with their

account
} Implement a honeyserver that stores the index of the correct

password for each user
} Honeyserver is logically and physically separate from the password

database
} Silently checks that users are logging in with true passwords, not

honeywords
} What happens after a data breach?

} Attacker dumps the user/password database…
} But the attacker does not know which passwords are honeywords
} Attacker cracks all passwords and uses them to login to accounts
} If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Authentication22

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

cbw aB y4DvF7 fI bHDJ8l 52 Puu2s7

sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

amislove 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

cbw 2

sandi 3

amislove 1

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) à bHDJ8l
cbw

User PW 1 PW 2 PW 3

cbw 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

amislove coff33 3spr3ss0 qwerty

!

Cracked Passwords

Authentication23

Password storage summary

1. Never store passwords in plain text
2. Always salt and hash passwords before storing

them
3. Use hash functions with a high work factor

} These rules apply to any system that needs to
authenticate users
} Operating systems, websites, databases, etc.

Authentication24

Password recovery and reset

Authentication

Password recovery/reset

} Problem: hashed passwords cannot be recovered
(hopefully) “Hi… I forgot my password. Can

you email me a copy? Kthxbye”

• This is why systems typically implement password reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: it is possible for an attacker to exploit
password reset

Authentication26

Knowledge-based reset

} Typical implementations use Knowledge Based
Authentication (KBA)
} What was your mother’s maiden name?
} What was your prior street address?
} Where did you go to elementary school

} Problems?
} This information is widely available to anyone
} Publicly accessible social network profiles
} Background-check services like Spokeo

} Experts recommend that services not use KBA
} When asked, users should generate random answers to these

questions
Authentication27

Account-based reset

} Idea: authenticate a user by sending a code to their
contact address
} Typically e-mail address or phone number

} Security rests on the assumption that the person’s
contact address is also secure
} E-mail account takeover
} SIM hijacking

Authentication28

Challenges of password reset

} Password reset mechanisms are often targeted and are
quite vulnerable

} Best practice: implement a layered mechanism
} Knowledge-based
} Secondary account
} Second factor authentication: biometric or tokens

} Warning: more secure = less usable
} Password loss is common, people will be frustrated by onerous

reset mechanisms

Authentication29

Password cracking

Crypto

Attacker goals and threat model

} Assume we have a system storing usernames and
passwords

} The attacker has access to the password database/file

User H(PW)

cbw iuafNas

sandi 23asZR

amislove 9xgGw/

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

Cracked Passwords

Database

I wanna login to
those user
accounts!

Authentication31

Basic password cracking

} Problem: humans are terrible at generating/remembering
random strings

} Passwords are often weak enough to be brute-forced
} Naïve way: systematically try all possible passwords
} Slightly smarter way: take into account non-uniform distribution of

characters

} Dictionary attacks are also highly effective
} Select a baseline wordlist/dictionary full of likely passwords

} Today, the best wordlists come from lists of breached passwords
} Rule-guided word mangling to look for slight variations

} E.g. password à Password à p4ssword à passw0rd à p4ssw0rd à
password1 à etc.

} Many password cracking tools exist (e.g. John the Ripper,
hashcat)

Authentication32

“Deep Crack”: The EFF DES Cracker

} DES uses a 56-bit key
} $250K in 1998, capable of

brute-forcing DES keys in
56 hours
} Uses 1856 custom ASIC

chips

} Similar attacks have been
demonstrated against
MD5, SHA1

} Modern equivalent?
} Bitcoin mining ASICs

Authentication33

Speeding up brute-force cracking

} Brute force attacks are slow because hashing is CPU
intensive
} Especially if a strong function (SHA512, bcrypt) is used

} Idea: why not pre-compute and store all hashes?
} You would only need to pay the CPU cost once…
} … for a given salt

} Given a hash function H, a target hash h, and password
space P, goal is to recover 𝑝 ∈ 𝑃 such that 𝐻 𝑝 = ℎ

} Problem: naïve approach requires Θ(|P|n) bits, where n is
the space of the output of H

Authentication34

Hash chains
} Hash chains enable time-space efficient reversal of hash functions
} Key idea: pre-compute chains of passwords of length k…

} … but only store the start and end of each chain
} Larger k à fewer chains to store, more CPU cost to rebuild chains
} Small k à more chains to store, less CPU cost to rebuild chains

} Building chains require H, as well as a reduction R : H ↦ P
} Begin by selecting some initial set of password 𝑃! ⊂ 𝑃
} For each 𝑝′ ∈ 𝑃’, apply 𝐻 𝑝! = ℎ!, 𝑅 ℎ! = 𝑝!! for k iterations
} Only store 𝑝′ and 𝑝′"

} Example of R -- take only the first 8 characters of the hash output
} To recover hash h, apply R and H until the end of a chain is found

} Rebuild the chain using 𝑝′ and 𝑝′"

} H(p) = h may be within the chain

Authentication35

Uncompressed hash chain example

p' H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’ R(h’’’) = p*

abcde \\WPNP_ vlsfqp _QOZLR eusrqv CMRQ5X cjldar

passw VZDGEF gfnxsk ZLGEKV yookol EBOTHT zvxscs

12345 SM-QK\9 sawtzg RHKP_D gvmdwm BYE4LB wjizbn

secrt OKFTaY btweoz WA15HK ttgovl Q_4\6ZB eivlqc

K = 3

Only these two
columns get stored on

disk

Authentication36

Hash chain example

p' p*
abcde cjldar

passw zvxscs

12345 wjizbn

secrt eivlqc

p H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’

sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

p' H(p’) = h’ R(h’) =
p”

H(p”) =
h”

R(h”) =
p’’’

H(p’’’) =
h’’’

R(h’’’) =
p*

12345 SM-QK\9 sawtzg RHKP_D wjizbn

• Size of the table is dramatically
reduced…

• … but some computation is necessary
once a match is found

Authentication37

Problems with hash chains

} Hash chains are prone to collisions
} Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is

more likely)
} Causes the chains to merge or overlap

} Problems caused by collisions
} Wasted space in the file, since the chains cover the same password

space

} False positives: a chain may not include the password even if the end
matches

} Proper choice of R() is critical
} Goal is to cover likely password space, not entire password space

} R cannot be collision resistant (like H) since it has to map into likely
plaintexts

} Difficult to select R under this criterion
Authentication38

Rainbow tables

} Rainbow tables improve on hash chains by reducing the
likelihood of collisions

} Key idea: instead of using a single reduction R, use a family
of reductions {R1, R2, … , Rk}
} Usage of H is the same as for hash chains
} A collisions can only occur between two chains if it happens at

the same position (e.g. Ri in both chains)

Authentication39

Rainbow tables

} Caveats
} Tables must be built for each hash function and character set
} Salting and key stretching defeat rainbow tables

} Rainbow tables are effective in some cases, e.g. MD5 and
NTLM (Microsoft authentication)
} Precomputed tables can be bought or downloaded for free

Authentication40

Choosing passwords

Authentication

Password quality

𝑆 = 𝑙𝑜𝑔! 𝑁"

} How do we measure password quality? Entropy (captures
unpredictability)
} N – the number of possible symbols (e.g. lowercase, uppercase,

numbers, etc.)
} L – the length of the password
} S – the strength of the password, in bits

} Formula tells you length L needed to achieve a desired
strength S…
} … for randomly generated passwords

} Is this a realistic measure in practice?
Authentication42

Strength of random passwords

𝑆 = 𝐿 ∗ 𝑙𝑜𝑔!𝑁

0
25
50
75

100
125
150
175
200

0 5 10 15 20 25 30 35

St
re

ng
th

 (B
its

)

Password Length (Characters)

26+26+10 Characters

26+26 Characters

26 Characters

Very
Weak

Very
Strong

Authentication43

Mental algorithms

} Years of security advice have trained people to generate
“secure” passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

1. Pick a word
2. Replace some of the letters with symbols (a à @, s à $,

etc.)
3. Maybe capitalize the first or last letter

Authentication44

Human generated passwords

Password Entropy
(bits)

Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birth year, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

• Modern attackers are sophisticated
• No need for brute force cracking!
• Use dictionaries containing common words and passwords from prior leaks
• Apply common “mental” permutations

Authentication45

Password Requirements
• comp n and basic n: use at

least n characters

• k word n: combine at least k
words using at least n
characters

• d class n: use at least d
character types (upper, lower,
digit, symbol) with at least n
characters

Plot from Shay et al.
https://www.blaseur.com/papers/tissec_1026.pdf

Authentication46

Better heuristics

} Notice that in 𝑆 = 𝐿 ∗ 𝑙𝑜𝑔#𝑁, length matters
more than symbol types
} Choose longer passwords (16+ characters)
} Do not worry about uppercase, digits, or symbols

} Use mnemonics
} Choose a sentence or phrase
} Reduce it to the first letter of each word
} Insert random uppercase, digits, and symbols

I double dare you, say “what” one more time
i2Dy,s”w”omt

Authentication47

Authentication48

Password reuse

} People have difficulty remembering >4 passwords
} Thus, people tend to reuse passwords across services
} What happens if any one of these services is compromised?

} Service-specific passwords are a beneficial form of
compartmentalization
} Limits the damage when one service is inevitably breaches

} Use a password manager
} Some service providers now check for password reuse

} Forbid users from selecting passwords that have appeared in
leaks

Authentication49

Authentication50

Authentication51

Biometric two-factor authentication

Authentication

Types of Secrets

} Actors provide their secret to log-in to a system
} Three classes of secrets:

1. Something you know
} Example: a password

2. Something you have
} Examples: a smart card or smart phone

3. Something you are
} Examples: fingerprint, voice scan, iris scan

Authentication53

Biometrics

} ancient Greek: bios ="life", metron ="measure“
} Physical features

} Fingerprints
} Face recognition
} Retinal and iris scans
} Hand geometry

} Behavioral characteristics
} Handwriting recognition
} Voice recognition
} Typing cadence
} Gait

Authentication54

Fingerprints

} Ubiquitous on modern smartphones,
some laptops

} Secure?
} May be subpoenaed by law

enforcement
} Relatively easy to compromise

1. Pick up a latent fingerprint (e.g. off a
glass) using tape or glue

2. Photograph and enhance the fingerprint
3. Etch the print into gelatin backed by a

conductor
4. Profit ;)

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Authentication55

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Facial recognition

} Popularized by FaceID on the iPhone X
} Secure?

} It depends

} Vulnerable to law enforcement requests
} Using 2D images?

} Not secure
} Trivial to break with a photo of the target’s

face

} Using 2D images + 3D depth maps?
} More secure, but not perfect
} Can be broken by crafting a lifelike mask of

the target
Authentication56

Authentication57

Voice recognition

} Secure?
} Very much depends on the implementation

} Some systems ask you to record a static phrase
} E.g. say “unlock” to unlock
} This is wildly insecure

} Attacker can record and replay your voice

} Others ask you to train a model of your voice
} Train the system by speaking several sentences
} To authenticate, speak several randomly chosen

words
} Not vulnerable to trivial replay attacks, but still

vulnerable
} Given enough samples of your voice, an attacker can

train a synthetic voice AI that sounds just like you

Authentication58

Fundamental issue with biometrics

} Biometrics are immutable
} You are the password, and you cannot change
} Unless you plan on undergoing plastic surgery?

} Once compromised, there is no reset
} Passwords and tokens can be changed

} Example: the Office of Personnel Management (OPM)
breach
} US gov agency responsible for background checks
} Had fingerprint records of all people with security clearance
} Breached by China in 2015, all records stolen :(

Authentication59

Token based two-factor authentication

Crypto

Types of Secrets

} Actors provide their secret to log-in to a system
} Three classes of secrets:

1. Something you know
} Example: a password

2. Something you have
} Examples: a smart card or smart phone

3. Something you are
} Examples: fingerprint, voice scan, iris scan

Authentication61

Something you have

} Two-factor authentication has become more
commonplace

} Possible second factors:
} SMS passcodes
} Time-based one time passwords
} Hardware tokens

Authentication62

SMS two factor

} Relies on your phone number as the second
factor
} Key assumption: only your phone should receive

SMS sent to your number

} SMS two factor is deprecated. Why?
} Social engineering the phone company

1. Call and pretend to be the victim
2. Say “I got a new SIM, please activate it”
3. If successful, phone calls and SMS are now sent

to your SIM in your phone, instead of the
victim

} Not hypothetical: successfully used against
many victims

Authentication63

One time passwords

} Generate ephemeral
passcodes that change over
time

} To login, supply normal
password and the current
one time password

} Relies on a shared secret
between your mobile device
and the service provider
} Shared secret allows both

parties to know the current
one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes
every few
minutes

Authentication64

Time-based one-time password algorithm

T0 = <the beginning of time, typically Thursday, 1 January
1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

Given K, this algorithm can
be run on your phone and by

the service provider

Authentication65

Secret sharing for TOTP

Authentication66

Hardware two factor

} Special hardware designed to hold
cryptographic keys

} Physically resistant to key extraction
attacks
} E.g. scanning tunneling electron

microscopes
} Uses:

} 2nd factor for OS log-on
} 2nd factor for some online services
} 2nd factor for password manager
} Storage of PGP and SSH keys

Authentication67

Universal 2nd Factor (U2F)

} Supported by Chrome, Opera, and
Firefox

} Works with Google, Dropbox,
Facebook, Github, Gitlab, etc.

} Pro tip: always buy 2 security keys
} Associate both with your accounts
} Keep one locked in a safe, in case you lose

your primary key ;)

Authentication68

Authentication in Linux

Crypto

Status check

} At this point, we have discussed:
} How to securely store passwords
} Techniques used by attackers to crack passwords
} Biometrics and 2nd factors

} Next topic: building authentication systems
} Given a user and password, how does the system authenticate

the user?
} How can we perform efficient, secure authentication in a

distributed system?

Authentication70

Authentication in Unix/Linux

} Users authenticate with the system by interacting with
login
} Prompts for username and password
} Credentials checked against locally stored credentials

} By default, password policies specified in a centralized,
modular way
} On Linux, using Pluggable Authentication Modules (PAM)
} Authorizes users, as well as environment, shell, prints MOTD,

etc.

Authentication71

Example PAM Configuration
cat /etc/pam.d/system-auth
#%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try_first_pass nullok sha512 shadow
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

72

• Use SHA512 as the hash function
• Use /etc/shadow for storage

Authentication

Unix Passwords

} Traditional method: crypt
} First eight bytes of password used as key (additional bytes are

ignored)
} 12-bit salt
} 25 iterations of DES on a zeroed vector

} Modern version of crypt are more extensible
} Full password used
} Up to 16 bytes of salt
} Support for additional hash functions like MD5, SHA256, and

SHA512
} Key lengthening: defaults to 5000 iterations, up to 108 – 1

Authentication

Password files

} Password hashes used to be in /etc/passwd
} World readable, contained usernames, password hashes, config

information
} Many programs read config info from the file…
} But very few (only one?) need the password hashes

} Turns out, world-readable hashes are Bad Idea
} Hashes now located in /etc/shadow

} Also includes account metadata like expiration
} Only visible to root

Authentication

Password storage on Linux

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 =

SHA512

Authentication75

Distributed authentication

Crypto

Distributed authentication

} Early on, people recognized the need for authentication in
distributed environments
} Example: university lab with many workstations
} Example: file server that accepts remote connections

} Synchronizing and managing password files on each
machine is not scalable
} Ideally, you want a centralized repository that stores policy and

credentials

Authentication77

The Yellow Pages

} Network Information Service (NIS), a.k.a. the Yellow
Pages
} Developed by Sun to distribute network configurations
} Central directory for users, hostnames, email aliases, etc.
} Exposed through yp* family of command line tools

} For instance, depending on /etc/nsswitch.conf, hostname
lookups can be resolved by using
} /etc/hosts
} DNS
} NIS

} Superseded by NIS+, LDAP

Authentication78

NIS Password Hashes

[cbw@workstation ~] ypcat passwd
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118::/home/adkap:/bin/zsh
amitpoon:i3LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA06wxjJEUgBE:13055:65101::/home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
ppkk315:s6CTSAkqqr/nU:14061:65101::/home/ppkk315:/bin/bash
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNe18GpeQj.:13682:65104::/home/sushma:/bin/bash
guerin1:n0Da2TmO9MDBI:14512:65105::/home/guerin1:/bin/bash

• Crypt based password hashes
• Can easily be cracked
• Many networks still rely on insecure NIS

79

Distributed authentication revisited

} Goal: a user would like
to use some resource on
the network
} File server, printer,

database, mail server, etc.

} Problem: access to
resources requires
authentication
} Auth Server contains all

credential information
} You do not want to

replicate the credentials
on all services

80

cbw

Database

Auth Server

Authentication

Attacker goals and threat model

} Goal: steal
credentials and gain
access to protected
resources

} Local attacker – may
spy on traffic

} Active attacker –
may send messages

} In some cases, may
be able to steal
information from
users

81

cbw

Database

Auth Server

I wanna access the
Database too ;)

Authentication

(Bad) Distributed Auth Example

} Idea: client forwards
user/password to service,
service queries Auth Server

} Problems:
} Passwords being sent in the

clear
} Attacker can observe them!
} Clearly we need encryption

} Database learns about
passwords
} Additional point of compromise
} Ideally, only the user and the

Auth Server should know their
password82

cbw

Database

Auth Server

cbw:p4ssw0rd

Please verify
cbw:p4ssw0rd

Looks good!

cbw:p4ssw0rd

Authentication

Reflection attack example

} A and B authenticate to each other, authentication comes from
knowing the secret key K, rA, rB are random numbers (nounces)

(1) A → B : rA
(2) B →A : Ek(rA, rB)

(3) A → B : rB

} Attack: E wants to trick A to accept them as B, thus needs to
obtain something like Ek(rA, rx), where rA was selected by A, and
rx can be selected by E, without knowing secret key K

(1) A → E : rA
(2) E →A : rA : Starting a new session, note that here E is the initiator

(3) A → E : Ek(rA, rA’) : Reply of (2)

(4) E →A : Ek(rA, rA’) : Reply of (1)

(5) A → E : rA’; this concludes session started with (1)

Authentication83

Interleaving attack example

} A and B authenticate to each other based on their secret keys
used for digital signature

(1) A → B : rA
(2) B →A : rB, SB(rB, rA, A)

(3) A → B : rA’, SA(rA’, rB, B)

} Attack: E wants to pass as A to B without knowing A’s private key,
so E needs to get A to sign a message

(1) E → B : rA
(2) B → E : rB, SB(rB, rA, A) E can not finish now, needs A to sign something

(1) E →A : rB E starts a parallel session with A

(2)A → E : rA’, SA(rA’, rB, B) this is what E needs for the session with B

(3) E → B : rA’, SA(rA’, rB, B) E can complete the session with B

Authentication84

Needham-Schroeder Protocol

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁#
2) 𝑆 → 𝐴: {𝑁# , 𝐾$% , 𝐵, 𝐾$% , 𝐴 &!"}&#"
3) 𝐴 → 𝐵: {𝐾$% , 𝐴}&!"
4) 𝐵 → 𝐴: {𝑁'}&#!
5) 𝐴 → 𝐵: {𝑁' − 1}&#!

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

KBS is not sent in the clear, authenticates B

Authentication85

Needham-Schroeder Example

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁#
2) 𝑆 →
𝐴: {𝑁# , 𝐾$% , 𝐵, 𝐾$% , 𝐴 &!"}&#"

3) 𝐴 → 𝐵: {𝐾$% , 𝐴}&!"
4) 𝐵 → 𝐴: {𝑁'}&#!
5) 𝐴 → 𝐵: {𝑁' − 1}&#!

cbw

Database

Auth Server

cbw, db, 𝑁!

{𝑁!}Kcbw-db

{𝑁# , Kcbw-db, db, {Kcbw-db, cbw}Kdb
}Kcbw

cbw

cbw

db

db
cbw-db

cbw-db
{Kcbw-db, cbw}Kdb
{𝑁! − 1}Kcbw-db

Authentication86

Attacking Needham-Schroeder
} Spoof the client request

} Fail! Client key is needed to
decrypt

} Spoof the Auth Server response
} Fail! Need to know the client key

} Spoof the client-server
interaction
} Fail! Need to know the database

key

} Replay the client-server
interaction
} Fail! Need to know the session

key

cbw

Database

Auth Server

cbw, db, 𝑁!

{𝑁!}Kcbw-db
cbw, db, 𝑁!{𝑁# , Kevil, db, {Kevil, cbw}Kdb

}Kcbw
{Kevil, cbw}Kdb

{Kcbw-db, cbw}Kdb

{𝑁# , Kcbw-db, db, {Kcbw-db, cbw}Kdb
}Kcbw

cbwcbw

db

db

evil cbw-db

Authentication87

Replay Attack

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁$
2) 𝑆 → 𝐴: {𝑁$, 𝐾%& , 𝐵, 𝐾%& , 𝐴 '!"}'#"
3) 𝐴 → 𝐵: {𝐾%& , 𝐴}'!"
4) 𝐵 → 𝐴: {𝑁(}'#!
5) 𝐴 → 𝐵: {𝑁(− 1}'#!

1) 𝑀 → 𝐵: {𝐾*+ , 𝐴},!"
2) 𝐵 → 𝑀: {𝑁-},#!
3) 𝑀 → 𝐵: {𝑁- − 1},#!

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB
• So the attacker can also steal KAS

• However, what happens after A changes KAS
• Attacker can still conduct the replay attack! Only KAB is necessary!

Authentication88

Fixed Needham-Schroeder Protocol

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁#
2) 𝑆 → 𝐴: {𝑁# , 𝐾$% , 𝐵, 𝐾$% , 𝐴, 𝑇 &!"}&#"
3) 𝐴 → 𝐵: {𝐾$% , 𝐴, 𝑇}&!"
4) 𝐵 → 𝐴: {𝑁'}&#!
5) 𝐴 → 𝐵: {𝑁' − 1}&#!

• Let Alice A and Bob B be two parties that trust server S
• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]
• Ni and Nj are random nonces generated by A and B
• T is a timestamp chosen by S

B only accepts requests
with fresh timestamps

Authentication89

Kerberos

} Created as part of MIT Project Athena
} Based on Needham-Schroeder

} Provides mutual authentication over untrusted networks
} Tickets as assertions of authenticity, authorization
} Forms basis of Active Directory authentication

} Principals
} Client
} Server
} Key distribution center (KDC)

} Authentication server (AS)
} Ticket granting server (TGS)

90

Kerberos Example

cbw

Database

Auth Server

cbw
{T - 1}Kcbw-

db

{cbw, Kcbw-tgs}Kcbw
, TGT

cbw

cbw

tgt

db

cbw-tgs

cbw-db

TGT, db, {cbw, T}Kcbw-tgs
{Kcbw-db}Kdb

, {cbw, T}Kcbw-

db

Ticket Granting
Server tgt

db

TGT

{Kcbw-db}Kcbw-tgs
, {Kcbw-

db}Kdb

cbw-db

Authentication91

Attacking Kerberos

} Don’t put all your eggs in one basket
} The Kerberos Key Distribution Server (KDS) is a central point

of failure
} DoS the KDS and the network ceases to function
} Compromise the KDS leads to network-wide compromise

} Time synchronization
} Inaccurate clocks lead to protocol failures (due to timestamps)
} Solution?
} Use NTP ;)

92

Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf

} For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent work of
Blas Ur: http://www.blaseur.com/pubs.htm

Authentication93

https://wkr.io/
http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf
http://www.blaseur.com/pubs.htm

