
Cristina Nita-Rotaru

7680: Distributed Systems

Gossip protocols.

Slides prepared based on material by Prof. Ken Birman at Cornell
University, available at http://www.cs.cornell.edu/ken/book/

Required reading for this topic…

} Bimodal multicast K. Birman, M.
HaydenO. Ozkasap, Z. Xiao, M.
Budiu, Y. Minsky

Gossip2

Reliable Multicast

} Ensures that a precise subset of processes/nodes in a
group delivers a message (ideally none of the other
processes receives the message)

} System environment characteristics
} Large number of processes
} No global network-level multicast protocol

Gossip3

Meaning of Reliability in Multicast

} Integrity: A correct process p delivers a message m at
most once.

} Validity: If a correct process multicasts message m, then it
will eventually deliver m.

} Agreement: If a correct process delivers message m, then
all the other correct processes in the group will
eventually deliver m.

Gossip4

Approaches

} Deterministic schemes
} With strong reliability guarantees do not scale well (e.g.,

O(n2) msgs)

} Probabilistic, gossip-based, schemes
} Every process periodically (every T ms) „talks” to a

subset of (Fanout, F) processes about some messages
} Good trade-off between reliability and scalability
} Very resilient to arbitrary crash failures

Gossip5

Limitations of Classical Reliable
Multicast

} With classical reliable
multicast, throughput
collapses as the system
scales up!

} Even if we have just
one slow receiver… as
the group gets larger
(hence more healthy
receivers), impact of a
performance
perturbation is more
and more evident!

Gossip6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250
Virtually synchronous Ensemble multicast protocols

perturb rate

av
er

ag
e

th
ro

ug
hp

ut
 o

n
no

np
er

tu
rb

ed
 m

em
be

rs group size: 32
group size: 64
group size: 96

32

96

Gossip Overview

Gossip7

“Did you hear that
Sally and John are
going out?”

l Node A encounters “randomly selected” node B (might
not be totally random)
§ Push: A tells B something B doesn’t know
§ Pull: A asks B for something it is trying to “find”
§ Push-pull: Combines both mechanisms

Definition: A Gossip Protocol…

} Uses random pairwise state merge
} Runs at a steady rate (and this rate is much slower than

the network RTT)
} Uses bounded-size messages
} Does not depend on messages getting through reliably

Gossip8

Gossip Benefits

} Information flows around disruptions
} Scales very well
} Typically reacts to new events in log(N), N

is number of processes
} Can be made self-repairing

Gossip9

… and Limitations

} Rather slow
} Very redundant
} Guarantees are at best probabilistic
} Depends heavily on the randomness of the peer

selection

Gossip

Typical Push-Pull Protocol

} Nodes have some form of database of participating
machines
} Could have a hacked bootstrap, then use gossip to keep this

up to date!

} Set a timer and when it goes off, select a peer
within the database
} Send it some form of “state digest”
} Peer responds with data you need and its own state digest
} Respond with data peer needs

Gossip11

Gossip Implementation

} Recall that UDP is an “unreliable” datagram
protocol supported in internet
} Unlike for TCP, data can be lost
} Also packets have a maximum size, usually 4k or 8k bytes

(you can control this)
} Larger packets are more likely to get lost!

} What if a packet would get too large?
} Gossip layer needs to pick the most valuable stuff to include,

and leave out the rest!

Gossip12

Use of Gossip Protocols

} Notify applications about some event
} Track the status of applications in a system
} Organize the nodes in some way (like into a tree, or even

sorted by some index)
} Find “things” (like files)

Gossip13

Probabilistic Multicast

} Validity: If a correct process multicasts a message m, then some
correct process in Dest(m) eventually delivers m

} Integrity: For any message m, every correct process p delivers
m at most once, and only if m was previously multicast by
Sender(m)

} ProbabilisticAgreement: If a correct process in Dest(m)
delivers message m, then every correct process in Dest(m)
eventually delivers m with known, high, probability ω.

Gossip14

Scalable Reliable Multicast

} Heartbeats: Each member periodically sends out a heartbeat
including the sequence number of the latest sent packet.
Members detect packet loss by comparing the sequence
number in the heartbeat and the sequence number of the last
data-packet received.

} NACKS: When a packet is lost, a negative acknowledgment
(NACK) is sent to all members using the same method of
transportation as the original data.

} Repair: Each member if he sees a NACK for a packet they
have in their cache, they retransmit that packet to the whole
group as a repair.

} To minimize the number of NACKs and repairs, these two
operations are preceded by exponential back-off.

Gossip15

Problems with ACK/NACK Schemes

} As number of receivers gets large ACKS/NAKS pile
up (sender has more and more work to do)
} Hence it needs longer to discover problems
} And this causes it to buffer messages for longer and

longer… hence flow control kicks in!
} So the whole group slows down

Gossip16

Bimodal Multicast: First Phase

Gossip17

} Combines gossip with IP multicast
} Start by using unreliable UDP multicast to rapidly

distribute the message.
} Some messages may not get through, and some processes

may be faulty: initial state involves partial distribution of
multicast(s)

Finding out what is missing

Gossip18

} Periodically (e.g. every 100ms) each process sends a
digest describing its state to some randomly selected
group member. The digest identifies messages.

Soliciting missed messages

Gossip19

} Recipient checks the gossip digest against its own
history and solicits a copy of any missing message from
the process that sent the gossip

Sending out missed packets

Gossip20

} Processes respond to solicitations received during a
round of gossip by retransmitting the requested
message. The round lasts much longer than a typical
RPC time.

Delivery? Garbage Collection?

} Deliver a message when it is in FIFO order
} Report an unrecoverable loss if a gap persists for so long

that recovery is deemed “impractical”
} Garbage collect a message when you believe that no “healthy”

process could still need a copy (we used to wait 10 rounds,
but now are using gossip to detect this condition)

} Match parameters to intended environment

Gossip21

Need to bound costs

} Worries:
} Someone could fall behind and never catch up, endlessly

loading everyone else
} What if some process has lots of stuff others want and they

bombard him with requests?
} What about scalability in buffering and in list of members of

the system, or costs of updating that list?

Gossip22

Scalability

} Protocol is scalable except for its use of the membership
of the full process group

} Updates could be costly
} Size of list could be costly
} In large groups, would also prefer not to gossip over long

high-latency links

Gossip23

Router Overload Problem

} Random gossip can overload a central router
} Yet information flowing through this router is of

diminishing quality as rate of gossip rises
} Insight: constant rate of gossip is achievable and adequate

Gossip24

Hierarchical Gossip

} Weight gossip so that probability of gossip to a remote
cluster is smaller

} Can adjust weight to have constant load on router
} Now propagation delays rise… but just increase rate of

gossip to compensate

Gossip25

How to Analyze such Protocols?

} Can use the mathematics of epidemic theory to predict
reliability of the protocol

} Assume an initial state
} Now look at result of running B rounds of gossip:

converges exponentially quickly towards atomic delivery

Gossip26

Summary

} Gossip is a valuable tool for
addressing some of the needs of
modern autonomic computing

} Often paired with other
mechanisms, eg anti-entropy
paired with UDP multicast

} Solutions scale well (if well
designed!)

Gossip27

