
Cristina Nita-Rotaru

7680: Distributed Systems

BigTable. Hbase.Spanner.

1: BigTable

Acknowledgement

} Slides based on material from course at UMichigan, U
Washington, and the authors of BigTable and Spanner.

BigTable. HBase. Spanner3

REQUIRED READING

} Bigtable: A Distributed Storage
System for Structured Data. 2008.
ACM Trans. Comput. Syst. 26, 2
(Jun. 2008), 1-26

} Spanner, Google’s globally
distributed database. OSDI 2012.

BigTable. HBase. Spanner4

BigTable

} Distributed storage system for managing structured data
such as:
} URLs: contents, crawl metadata, links, anchors, pagerank
} Per-user data: user preference settings, recent queries/search

results
} Geographic locations: physical entities (shops, restaurants, etc.),

roads, satellite image data, user annotations, …

} Designed to scale to a very large size: petabytes of data
distributed across thousands of servers

} Used for many Google applications
} Web indexing, Personalized Search, Google Earth, Google

Analytics, Google Finance, … and more
BigTable. HBase. Spanner5

Why BigTable?

} Scalability requirements not met by existent commercial
systems:
} Millions of machines
} Hundreds of millions of users
} Billions of URLs, many versions/page
} Thousands or queries/sec
} 100TB+ of satellite image data

} Low-level storage optimization helps performance
significantly

BigTable. HBase. Spanner6

Goals

} Simpler model that supports dynamic control over data
and layout format

} Want asynchronous processes to be continuously
updating different pieces of data: access to most current
data at any time

} Examine data changes over time: e.g. contents of a web
page over multiple crawls

} Support for:
} Very high read/write rates (millions ops per second)
} Efficient scans over all or subsets of data
} Efficient joins of large one-to-one and one-to-many datasets

BigTable. HBase. Spanner7

Design Overview

} Distributed multi-level map
} Fault-tolerant, persistent
} Scalable

} Thousands of servers
} Terabytes of in-memory data
} Petabyte of disk-based data
} Millions of reads/writes per second, efficient scans

} Self-managing
} Servers can be added/removed dynamically
} Servers adjust to load imbalance

BigTable. HBase. Spanner8

Typical Google Cluster

Shared pool of machines that also run other distributed applications

BigTable. HBase. Spanner9

Building Blocks

} Google File System (GFS)
} Stores persistent data (SSTable file format)

} Scheduler
} Schedules jobs onto machines

} Chubby
} Lock service: distributed lock manager, master election,

location bootstrapping

} MapReduce (optional)
} Data processing
} Read/write BigTable data

BigTable. HBase. Spanner10

Chubby

} {lock/file/name} service
} Coarse-grained locks

} Provides a namespace that consists of directories and small
files.

} Each of the directories or files can be used as a lock.

} Each client has a session with Chubby
} The session expires if it is unable to renew its session lease

within the lease expiration time.

} 5 replicas Paxos, need a majority vote to be active

BigTable. HBase. Spanner11

Data Model

} A sparse, distributed persistent multi-dimensional sorted
map

} Rows, column are arbitrary strings

} (row, column, timestamp) -> cell contents

BigTable. HBase. Spanner12

Data Model: Rows

} Arbitrary string
} Access to data in a row is atomic

} Row creation is implicit upon storing data
} Ordered lexicographically

BigTable. HBase. Spanner13

Rows (cont.)

} Rows close together lexicographically usually on one or a
small number of machines

} Reads of short row ranges are efficient and typically
require communication with a small number of machines

} Can exploit lexicographic order by selecting row keys so
they get good locality for data access

} Example:
} math.gatech.edu, math.uga.edu, phys.gatech.edu,

phys.uga.edu
} VS
} edu.gatech.math, edu.gatech.phys, edu.uga.math,

edu.uga.phys
BigTable. HBase. Spanner14

Data Model: Columns

} Two-level name structure: family: qualifier
} Column family:

} Is the unit of access control
} Has associated type information

} Qualifier gives unbounded columns
} Additional levels of indexing, if desired

BigTable. HBase. Spanner15

Data Model: Timestamps (64bit integers)

Store different versions of data in a
cell:

} New writes default to current
time, but timestamps for writes
can also be set explicitly by
clients

} Lookup options
} Return most recent K values
} Return all values

} Column families can be marked w/
attributes:
} Retain most recent K values in a cell
} Keep values until they are older

than K seconds

BigTable. HBase. Spanner16

Data Model: Tablet

} The row range for a table is dynamically partitioned
} Each row range is called a tablet (typically 10-100 bytes)
} Tablet is the unit for distribution and load balancing

BigTable. HBase. Spanner17

Storage: SSTable

} Immutable, sorted file of key-value pairs
} Optionally, SSTable can be completely mapped into

memory
} Chunks of data plus an index

} Index is of block ranges, not values
} Index is loaded into memory when SSTable is open

Index

64K
block

64K
block

64K
block

SSTable

BigTable. HBase. Spanner18

Tablet vs. SSTable

} Tablet is built out of multiple SSTables

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

BigTable. HBase. Spanner19

Table vs. Tablet vs. SSTable

} Multiple tablets make up the table
} SSTables can be shared
} Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple_two_E boat

BigTable. HBase. Spanner20

Example: WebTable

} Want to keep copy of a large collection of web pages and
related information

} Use URLs as row keys
} Various aspects of web page as column names
} Store contents of web pages in the contents: column

under the timestamps when they were fetched.
BigTable. HBase. Spanner21

Implementation

} Library linked into every client
} One master server responsible for:

} Assigning tablets to tablet servers
} Detecting addition and expiration of tablet servers
} Balancing tablet-server load
} Garbage collection
} Handling schema changes such as table and column family

creation
} Many tablet servers, each of them:

} Handles read and write requests to its table
} Splits tablets that have grown too large

} Clients communicate directly with tablet servers for reads and
writes. BigTable. HBase. Spanner22

Deployment

BigTable. HBase. Spanner23

More about Tablets

} Serving machine responsible for 10 - 1000
} Usually about 100 tablets

} Fast recovery:
} 100 machines each pick up 1 tablet for failed machine

} Fine-grained load balancing:
} Migrate tablets away from overloaded machine
} Master makes load-balancing decisions

BigTable. HBase. Spanner24

Tablet Location

} Since tablets move around from server to server, given a
row, how do clients find the right machine
} Find tablet whose row range covers the target row

} METADATA: Key: table id + end row, Data: location
} Aggressive caching and prefetching at client side

BigTable. HBase. Spanner25

Tablet Assignment

} Each tablet is assigned to one tablet server at a time.
} Master server

} Keeps track of the set of live tablet servers and current
assignments of tablets to servers.

} Keeps track of unassigned tablets.

} When a tablet is unassigned, master assigns the tablet to a
tablet server with sufficient room.

} It uses Chubby to monitor health of tablet servers, and
restart/replace failed servers.

BigTable. HBase. Spanner26

Tablet Assignment: Chubby

} Tablet server registers itself with Chubby by getting a
lock in a specific directory of Chubby

} Chubby gives “lease” on lock, must be renewed
periodically

} Server loses lock if it gets disconnected
} Master monitors this directory to find which servers

exist/are alive
} If server not contactable/has lost lock, master grabs lock and

reassigns tablets
} GFS replicates data. Prefer to start tablet server on same

machine that the data is already at

BigTable. HBase. Spanner27

API

} Metadata operations
} Create/delete tables, column families, change metadata

} Writes (atomic)
} Set(): write cells in a row
} DeleteCells(): delete cells in a row
} DeleteRow(): delete all cells in a row

} Reads
} Scanner: read arbitrary cells in a bigtable

} Each row read is atomic
} Can restrict returned rows to a particular range
} Can ask for just data from 1 row, all rows, etc.
} Can ask for all columns, just certain column families, or specific

columns BigTable. HBase. Spanner28

Refinements: Locality Groups

} Can group multiple column families into a locality group
} Separate SSTable is created for each locality group in each

tablet.

} Segregating columns families that are not typically
accessed together enables more efficient reads.
} In WebTable, page metadata can be in one group and contents

of the page in another group.

BigTable. HBase. Spanner29

Refinements: Compression

} Many opportunities for compression
} Similar values in the same row/column at different timestamps
} Similar values in different columns
} Similar values across adjacent rows

} Two-pass custom compressions scheme
} First pass: compress long common strings across a large

window
} Second pass: look for repetitions in small window

} Speed emphasized, but good space reduction (10-to-1)

BigTable. HBase. Spanner30

Refinements: Bloom Filters

} Read operation has to read from disk when desired
SSTable is not in memory

} Reduce number of accesses by specifying a Bloom filter:
} Allows to ask if a SSTable might contain data for a specified

row/column pair.
} Small amount of memory for Bloom filters drastically reduces

the number of disk seeks for read operations
} Results in most lookups for non-existent rows or columns not

needing to touch disk

BigTable. HBase. Spanner31

Real Applications

BigTable. HBase. Spanner32

Limitations

} No transactions supported
} Does not support full relational data model
} Achieved throughput is limited by GFS

BigTable. HBase. Spanner33

Lessons Learnt

} Large distributed systems vulnerable to many type of
failures
} Memory and network corruption
} Large clock skew
} Hung machines
} Extended and asymmetric network partitions
} Bugs in other systems

} Proper system-level monitoring critical
} Simple design better
} Do not add new features before they are needed

BigTable. HBase. Spanner34

2: HBase

HBase

} Open-source, distributed, versioned, column-oriented
data store, modeled after Google's Bigtable

} Random, real time read/write access to large data:
} Billions of rows, millions of columns
} Distributed across clusters of commodity hardware

BigTable. HBase. Spanner36

History

} 2006.11
} Google releases paper on BigTable

} 2007.2
} Initial HBase prototype created as Hadoop contrib.

} 2007.10
} First useable HBase

} 2008.1
} Hadoop become Apache top-level project and HBase becomes

subproject

} Current stable release 0.98.x

BigTable. HBase. Spanner37

HBase Is Not …

} Tables have one primary index, the row key.
} No join operators.
} Scans and queries can select a subset of available columns.
} There are three types of lookups:

} Fast lookup using row key and optional timestamp.
} Full table scan
} Range scan from region start to end.

BigTable. HBase. Spanner38

HBase Is Not …(2)

} Limited atomicity and transaction support.
} HBase supports multiple batched mutations of single rows only.
} Data is unstructured and untyped.

} No accessed or manipulated via SQL.
} Programmatic access via Java, REST, or Thrift APIs.
} Scripting via JRuby.

BigTable. HBase. Spanner39

3: Spanner

Limitations of BigTable

} Difficult to use for applications that
} have complex, evolving schemas,
} want strong consistency in the presence of wide-area

replication

BigTable. HBase. Spanner41

What is Spanner

} Scalable, multi-version, globally- distributed, and
synchronously-replicated database

} Distribute data at global scale and support externally-
consistent distributed transactions.

} Features:
} non- blocking reads in the past
} lock-free read-only transactions,
} atomic schema changes

} Scale up to
} millions of machines
} hundreds of datacenters
} trillions of database rows BigTable. HBase. Spanner42

What is Spanner

} Applications can control replication configurations for
data

} Applications can specify constraints
} to control which datacenters contain which data, how far data

is from its users (to control read latency)
} how far replicas are from each other (to control write latency)
} how many replicas are maintained (to control durability,

availability, and read performance).

} Data can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters

BigTable. HBase. Spanner43

Spanner – key idea

} Consistent reads and writes
} How:

} use global commit timestamps to transactions, even though
transactions may be distributed.

} timestamps represent serialization order.
} provide such guarantees at global scale

} How to get the global timestamps: TrueTime
} Relies on existing algorithms as Paxos and 2PC

BigTable. HBase. Spanner44

Architecture

} Instance – it’s called universe; examples: test, deployment,
production
} Universe master
} Placement master

} handles automated movement of data across zones on the timescale
of minutes

} periodically communicates with the spanservers to find data that
needs to be moved, either to meet updated replication constraints or
to balance load.

} Universe consists of zones
} Denotes physical isolation
} Several zones can be in a datacenter

BigTable. HBase. Spanner45

Architecture

BigTable. HBase. Spanner46

Zones

} Zonemaster
} assigns the data to span servers

} Spanservers
} hundreds to thousands
} store data
} responsible for between 100 and 1000 instances of a data

structure called a tablet (different from the BigTable tablet)
} each data has a timestamp

} Location proxies
} used by clients to locate the spanservers assigned to serve

their data

BigTable. HBase. Spanner47

Replication

BigTable. HBase. Spanner48

More about replication

} Directory – analogous to bucket in BigTable
} Smallest unit of data placement
} Smallest unit to define replication properties

} 2PC and Paxos-based replication
} Back End: Colossus (successor to GFS)
} Paxos State Machine on top of each tablet stores meta

data and logs of the tablet.
} Leader among replicas in a Paxos group is chosen and all

write requests for replicas in that group initiate at leader.
} Transaction Leader

} Is Paxos Leader if transaction involves one Paxos group
BigTable. HBase. Spanner49

TrueTime

} Leverages hardware features like GPS and Atomic Clocks
} Implemented via TrueTime API

} Key method being now() which not only returns current
system time but also another value (ε) which tells the
maximum uncertainty in the time returned

} Set of time master server per datacenters and time slave
daemon per machines

} Majority of time masters are GPS fitted and few others
are atomic clock fitted (Armageddon masters)

} Daemon polls variety of masters and reaches a consensus
about correct timestamp

BigTable. HBase. Spanner50

TrueTime

} TrueTime uses both GPS and Atomic clocks since they
are different failure rates and scenarios

} Two other boolean methods in API are
} After(t) – returns TRUE if t is definitely passed
} Before(t) – returns TRUE if t is definitely not arrived

} TrueTime uses these methods in concurrency control and
t serialize transactions

BigTable. HBase. Spanner51

TrueTime

} After() is used for Paxos Leader Leases
} Uses after(Smax) to check if Smax is passed so that Paxos

Leader can abdicate its slaves.

} Paxos Leaders can not assign timestamps(Si) greater than
Smax for transactions(Ti) and clients can not see the data
commited by transaction Ti till after(Si) is true.
} After(t) – returns TRUE if t is definitely passed
} Before(t) – returns TRUE if t is definitely not arrived

} Replicas maintain a timestamp tsafe which is the
maximum timestamp at which that replica is up to date.

BigTable. HBase. Spanner52

TrueTime

} Read-Write – requires lock.
} Read-Only – lock free.

} Requires declaration before start of transaction.
} Reads information that is up to date

} Snapshot Read – Read information from past by specifying
a timestamp or bound
} Use specifies specific timestamp from past or timestamp bound

so that data till that point will be read.

BigTable. HBase. Spanner53

Applications

} Google advertising backend application – F1
} Replicated across 5 datacenters spread across US

BigTable. HBase. Spanner54

