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Required reading for this topic…

} Distributed GraphLab: A Framework for 
Machine Learning and Data Mining in the 
Cloud, VLDB 2012

} Pregel: A System for Large-Scale Graph 
Processing, SIGMOD 2010

} TensorFlow: A System for Large-Scale 
Machine Learning OSDI 2016

} Scaling Distributed Machine Learning 
with the Parameter Server, OSDI 2014
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Clouds and machine learning tools

} Early cloud just served web pages and embedded ads
} However,  individualized advertising gives far better 

results… (and they increase revenue)
} Better selection of ads gave rise to an AI revolution

} Individual actions
} Social networking “graphs”

} Today, the whole cloud is a massive scalable system for 
machine learning and associated actions
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Where does the AI live?

4

Mobile 
client

Second 
tier: 

Caches 
and similar 
µ-services

First tier: 
Builds 
web 

pages

Third tier: 
Stateful

services like 
databases, 
plus other 
“workers”

Back-end: Big-
data analytics 
and machine 
learning tools

Stuff “happens” here                 …100ms                                      ….seconds                                  
….minutes/hours

http://www.cs.cornell.edu/courses/cs5412/2018sp
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How to support ML algorithms at scale

} Old approach: 
} threads, locks, messages

} Newer approach: 
} MapReduce, Spark

} When is MapReduce the right approach?
} When MapReduce does not work well?
} Design new abstractions and systems to support ML 

development and running at scale
} GraphLab, created at CMU, eventually bought by Apple
} TensorFlow, created by GoogleBrain
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1:Why Map-Reduce is not the best approach 
for ML applications



CPU 1 CPU 2 CPU 3 CPU 4

MapReduce – Map Phase
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CPU 1 CPU 2 CPU 3 CPU 4

MapReduce – Map Phase
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CPU 1 CPU 2 CPU 3 CPU 4

MapReduce – Map Phase
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Embarrassingly Parallel independent computation 
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CPU 1 CPU 2

MapReduce – Reduce Phase
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Belief
Propagation

Label Propagation

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor 
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

} Excellent for large data-parallel tasks!
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Data-ParallelGraph-Parallel

Cross
Validation

Feature 
Extraction

Map Reduce

Computing Sufficient
Statistics 

Is there more to
Machine Learning

?



Profile

Label propagation algorithm

} Social Arithmetic:

} Recurrence Algorithm:

} iterate until convergence

} Parallelism:
} Compute all Likes[i] in parallel

Sue Ann

Carlos
Jo

se
ph

50% What I list on my profile
40% Sue Ann Likes
10% Carlos Like

40%

10%

50%

80% 
Cameras
20% Biking

30% 
Cameras
70% Biking

50% 
Cameras
50% Biking

I Like:

+
60% Cameras, 
40% Biking

Likes[i]= Wij × Likes[ j]
j∈Friends[i]
∑
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Properties of Graph Parallel Algorithms
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Dependency
Graph

Iterative
Computation

What I Like

What My 
Friends Like

Factored 
Computation 



?

Belief
Propagation

Label Propagation

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor 
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

} Excellent for large data-parallel tasks!
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Data-ParallelGraph-Parallel

Cross
Validation
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Map Reduce

Computing Sufficient
Statistics 

Map Reduce?



Limitations of MR: Data Dependencies
} Map-Reduce does not efficiently express dependent data

} User must code substantial data transformations 
} Costly data replication
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Limitations of MR: Iterative Algorithms

} Map-Reduce does not efficiently express iterative algorithms:
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Iterative MapReduce

} Only a subset of data needs computation:
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Iterative MapReduce

} System is not optimized for iteration:
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Belief
Propagation

SVM

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor 
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

} Excellent for large data-parallel tasks!
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Data-ParallelGraph-Parallel

Cross
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Map Reduce

Computing Sufficient
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Map Reduce?Pregel (Giraph)?



Barrier
Pregel (Giraph)

} Bulk Synchronous Parallel Model (Valiant 1990):

AI20
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Loopy Belief Propagation (Loopy BP)

} Iteratively estimate the “beliefs” about vertices
} Read in messages
} Updates marginal

estimate (belief)
} Send updated 

out messages

} Repeat for all variables
until convergence
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Bulk Synchronous Loopy BP

} Often considered embarrassingly parallel 
} Associate processor 

with each vertex
} Receive all messages
} Update all beliefs
} Send all messages

} Proposed by:
} Brunton et al. CRV’06
} Mendiburu et al. GECC’07
} Kang,et al.  LDMTA’10
} …

AI22



Sequential Computational Structure
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Hidden Sequential Structure
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Hidden Sequential Structure

} Running Time:

AI25

EvidenceEvidence

Time for a single
parallel iteration Number of Iterations



Optimal Sequential Algorithm
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Forward-Backward

Bulk Synchronous
2n2/p

p ≤ 2n

Running
Time

2n

Ga
p

p = 1
Optimal Parallel

n
p = 2



The Splash Operation

} Generalize the optimal chain algorithm:

to arbitrary cyclic graphs:

AI27
~

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all 
messages at each vertex



Data-Parallel algorithms can be inefficient
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The limitations of the Map-Reduce abstraction can 
lead to inefficient parallel algorithms.
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Belief
PropagationSVM

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor 
Factorization

PageRank

Lasso

Need a new abstraction

} Map-Reduce is not well suited for Graph-Parallelism
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2:GraphLab



The GraphLab Framework

AI31

Scheduler Consistency 
Model

Graph Based
Data Representation

Update Functions
User 

Computation



Data Graph

AI32

A graph with arbitrary data (C++ Objects) 
associated with each vertex and edge.

Vertex Data:
•User profile text
• Current interests estimates

Edge Data:
• Similarity weights 

Graph:
• Social Network



Implementing the Data Graph

} In Memory
} Relatively Straight Forward

} vertex_data(vid) à data
} edge_data(vid,vid) à data
} neighbors(vid) à vid_list

} Challenge:
} Fast lookup, low overhead

} Solution:
} Dense data-structures
} Fixed Vdata&Edata types
} Immutable graph structure
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Multicore Setting Cluster Setting
} In Memory
} Partition Graph:

} ParMETIS or Random 
Cuts

} Cached Ghosting
Node 1 Node 2

A B

C D

A B

C D

A B

C D



The GraphLab Framework
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Scheduler Consistency 
Model

Graph Based
Data Representation

Update Functions
User 

Computation



label_prop(i, scope){
// Get Neighborhood data

(Likes[i], Wij, Likes[j]) ßscope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then 

reschedule_neighbors_of(i); 
}

Likes[i]← Wij × Likes[ j]
j∈Friends[i]
∑ ;

Update Functions

AI35

An update function is a user defined program which when applied 
to a vertex transforms the data in the scope of the vertex



The GraphLab Framework
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Scheduler Consistency 
Model

Graph Based
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Update Functions
User 

Computation



The Scheduler
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CPU 1

CPU 2

The scheduler determines the order that vertices are 
updated.
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The process repeats until the scheduler is empty.



CPU 1CPU 2CPU 3CPU 4

Implementing the Schedulers

} Challenging!
} Fine-grained locking
} Atomic operations

} Approximate FiFo/Priority
} Random placement
} Work stealing
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} Multicore Setting } Cluster Setting

} Multicore scheduler on 
each node
} Schedules only “local” 

vertices
} Exchange update functions
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The GraphLab Framework
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Scheduler Consistency 
Model

Graph Based
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Update Functions
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Ensuring Race-Free Code

} How much can computation overlap?
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Importance of consistency

AI42

Many algorithms require strict consistency, or perform 
significantly better under strict consistency.
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Importance of consistency

Machine learning algorithms require “model debugging”

Build

Test

Debug

Tweak Model
AI43



GraphLab Ensures Sequential Consistency

AI44

For each parallel execution, there exists a sequential 
execution of update functions which produces the same 
result. 

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time



Consistency Rules
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Guaranteed sequential consistency for all update functions

Data



Full Consistency
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Obtaining More Parallelism
48

AI



Edge Consistency
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CPU 1 CPU 2

Safe

Read



Consistency Through R/W Locks

} Read/Write locks:
} Full Consistency

} Edge Consistency

AI50

Write Write Write
Canonical Lock Ordering

Read Write Read
Read Write



Consistency Through R/W Locks

} Multicore Setting: Pthread R/W Locks
} Distributed Setting:  Distributed Locking

} Prefetch Locks and Data

} Allow computation to proceed while locks/data are requested.

AI51

Node 2Node 1Data Graph
Partition

Lock Pipeline



Consistency through scheduling

} Edge Consistency Model:
} Two vertices can be Updated simultaneously if they do not 

share an edge.

} Graph Coloring:
} Two vertices can be assigned the same color if they do not 

share an edge.
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The GraphLab Framework
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Algorithms Implemented 

} PageRank
} Loopy Belief Propagation
} Gibbs Sampling
} CoEM
} Graphical Model Parameter Learning
} Probabilistic Matrix/Tensor Factorization
} Alternating Least Squares
} Lasso with Sparse Features
} Support Vector Machines with Sparse Features
} Label-Propagation
} …
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Fault-tolerance: Checkpointing

1985: Chandy-Lamport invented an asynchronous 
snapshotting algorithm for distributed systems.

55

snapshotted
Not snapshotted



Checkpointing
Fine Grained Chandy-Lamport.

Easily implemented within GraphLab as an Update 
Function! 



Async. Snapshot Performance
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Loopy Belief Propagation
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3D retinal image denoising

Data Graph
Update Function:
Loopy BP Update Equation
Scheduler:
Approximate Priority
Consistency Model:

Edge Consistency

Vertices: 1 Million
Edges: 3 Million



Loopy Belief Propagation

15.5x speedup 
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CoEM (Rosie Jones, 2005)
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Named Entity Recognition Task 
the dog

Australia

Catalina Island

<X> ran quickly

travelled to <X>

<X> is pleasant

Hadoop 95 Cores 7.5 hrs

Is “Dog” an animal?
Is “Catalina” a place?

Vertices: 2 Million
Edges: 200 Million
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CoEM (Rosie Jones, 2005)

61

GraphLab 16 Cores 30 min

15x Faster!6x fewer CPUs!

Hadoop 95 Cores 7.5 hrs
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Video Cosegmentation
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Segments mean the same

Model: 10.5 million nodes, 31 million edges

Gaussian EM clustering + BP on 3D grid



Video Coseg. Speedups
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Prefetching Data & Locks
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Matrix Factorization

} Netflix Collaborative Filtering
} Alternating Least Squares Matrix Factorization
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Model: 0.5 million nodes, 99 million edges

Netflix

Users

Movies

d



Netflix
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The Cost of Hadoop
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Summary

} An abstraction tailored to Machine Learning
} Targets Graph-Parallel Algorithms

} Naturally expresses
} Data/computational dependencies
} Dynamic iterative computation

} Simplifies parallel algorithm design
} Automatically ensures data consistency
} Achieves state-of-the-art parallel performance 

on a variety of problems
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3:TensorFlow



Context

} Huge need for high-productivity tools for building 
solutions to machine-learning problems

} Current infrastructures force people to reinvent the 
wheel

} Spark/RDD model illustrates power that better tools 
bring, but remains very low level: an RDD can deal with 
“anything” and is really just a small code applet

} TensorFlow builds off idea that ML applications are best 
understood by thinking about structured data: tensors
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Python+Dataflow Programming
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DataFlow Programming Example

node1 = tf.constant(3.0, dtype=tf.float32)

node2 = tf.constant(4.0, dtype=tf.float32)

node3 = tf.add(node1,node2)

Constant 3

Constant 4

Add
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Core TensorFlow Constructs

} Dataflow Graphs: entire computation
} Data Nodes: individual data or operations
} Edges: implicit dependencies between nodes; 

} TensorFlow transparently inserts the appropriate 
communication between distributed subcomputations.

} Operations: any computation 
} Constants: single values (tensors)
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Core TensorFlow constructs

} All nodes return tensors, or higher-dimensional matrices

} How a node computes is indistinguishable to 
TensorFlow

} You are metaprogramming. No computation occurs 
yet!
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Running code

tf.Session().run(node3) #returns 7
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Placeholders (inputs) and how to use 
them

node1 = tf.placeholder(tf.float32)

node2 = tf.placeholder(tf.float32)

node3 = tf.add(node1,node2)

tf.Session().run(node3, {node1 : 3, node2 : 4})
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Variables (mutable state)

W = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([-.3], dtype=tf.float32)

x = tf.placeholder(tf.float32)

linear_model = W * x + b #Operator 

Overloading!

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

sess.run(linear_model) AI77



Specifying devices using with blocks

with tf.device("/cpu:0"):

W = tf.Variable(...)

V = tf.Variable(...)

with tf.device("/gpu:0")

output = tf.some_fancy_math(input, W) + b

CPU:0 GPU:0
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Specifying devices using with blocks

with tf.device("/task:0/cpu:0"):

W = tf.Variable(...)

V = tf.Variable(...)

with tf.device("/task:1/gpu:0")

output = tf.some_fancy_math(input, W) + b

task:0/CPU:0 task:1/GPU:0
AI79



Starting remote TensorFlow nodes

#all the machines mentioned in the dataflow 

graph

cluster =

tf.train.ClusterSpec([ip1:p1,ip2:p2,...])

#task_index is set to my "id"

server = tf.train.Server(cluster,task_index=0)

#begin listening

server.join()
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with tf.device("/task:n"):

half_input = tf.Variable(input[:len(input)/2])

work = tf.CoolFeature(half_input)

cluster = tf.train.ClusterSpec(...)

server = tf.train.Server(cluster, task_index=n)

with tf.Session(server.target) as sess:

sess.run(work)

Sessions run code on subgraphs; can parallelize by 
splitting input

Server actions
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Suggested Design: parameter server

TensorFlow allows naming groups of nodes by their role: useful!
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Parameter server focus : 

} Hold Mutable state
} Apply updates
} Maintain availability
} Group Name: ps
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Worker focus: 

} Perform “active” actions
} Checkpoint state to FS
} Mostly stateless; can be restarted
} Group name: worker
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Parameter server example

with tf.device("/jobs:ps/task:0/cpu:0"):

W = tf.Variable(...)

b = tf.Variable(...)

inputs = tf.split(0,num_workers,input)

outputs = []

for i in range (num_workers):

with tf.device("/job:worker/task:%d/gpu:0" % i):

outputs.append(tf.matmul(input[i],W) + b)
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And that’s it!

} For most TF applications, you don’t need to know more.

} But this is because most TF runs are just a few steps, like 
a Spark job that performs a few actions on some RDDs

} What about using TF for long-term jobs that continuously 
process input, like events from a smart highway?
} The model still makes sense, but now fault-tolerance would be 

an issue
} Control of concurrency / consistency could begin to matter, 

too.
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Adding Fault tolerance

Leader
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Distinguished Leader

saver = tf.train.Saver(sharded=True)

with tf.Session(server.target) as sess:

while True:

... #sleep a bit

saver.save(sess, "gs://path/to/dump")

if (bad_thing_happens):

saver.load(sess,"gs://path/to/dump")

Hardcoded role.  No worries about leader election, no 
consensus
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Adding Fault tolerance

Leader

AI89



Adding Fault tolerance

Leader
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Adding Fault tolerance

Leader
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Adding Fault tolerance

Leader

RESTART FROM CHECKPOINT!
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Adding Fault tolerance

Leader
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Adding Fault tolerance

Leader

CALL THE OPERATOR! MANUAL INTERVENTION!
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} There are libraries, but they are still a bit painful.

} Remember to create frequent checkpoints

Bottom line is that by default, TF is not consistent and 
is good at restarting from a checkpoint.  Recent 
events not in a checkpoint can be forgotten.

Notes
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TensorFlow implementation

} Semi-interpreted
} Call to kernel per 

primitive operation
} Can batch operations 

with custom C++
} Basic type-safety within 

dataflow graph (error at 
graph construction time)

} Global Names: 
overlapping TF instances 
share variables!
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Synchronous vs Asynchronous

} Determined by node: Queue nodes used for barriers
} Synchronous nearly as fast as asynchronous
} Default model is asynchronous
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Performance: Single Node
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Performance: Distributed Throughput 
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Key Contributions

} Programmability
} Accessibility / ease of use
} Richness of Libraries
} Ready-made community
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