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Lookup services. Chord. Pastry. Kademlia.



Required Reading

} I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. 
Balakrishnan, Chord: A Scalable Peer-to-peer 
Lookup Service for Internet Applications, 
SIGCOMM 2001. 

} A. Rowstron and P. Druschel. "Pastry: Scalable, 
decentralized object location and routing for 
large-scale peer-to-peer systems". IFIP/ACM 
International Conference on Distributed Systems 
Platforms (Middleware), 2001

} Kademlia: A Peer-to-peer Information System 
Based on the XOR Metric. P. Maymounkov and D. 
Mazieres, IPTPS '02
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1: Lookup services



Peer-to-Peer (P2P) Systems

} Applications that take advantage of resources (storage, 
cycles, content, human presence) available at the edges of 
the Internet. 

} Characteristics:
} System consists of clients connected through Internet and 

acting as peers
} System is designed to work in the presence of variable 

connectivity
} Nodes at the edges of the network have significant autonomy; 

no centralized control
} Nodes are symmetric in function
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Benefits of P2P and Applications

} High capacity: all clients provide resources (bandwidth, 
storage space, and computing power). The capacity of the 
system increases as more nodes become part of the 
system.

} Increased reliability: achieved by replicating data over 
multiple peers, and by enabling peers to find the data 
without relying on a centralized index server.

} Applications:
} File sharing: Napster, Gnutella, Freenet, BitTorrent 
} Distributed file systems: Ivy
} Multicast overlays: ESM, NICE, AIML
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Issues in P2P Systems Design

} How do nodes self-organize, what are appropriate 
structures?

} How to search efficiently or perform more complex 
queries?

} How to route efficiently on such structures?
} How to maintain performance in spite of crashes, 

transient failures?
} How to maintain availability in spite of failures and 

partitions?
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Structure of P2P File Sharing Systems

Distributed hash table

Distributed application

RETRIEVE (key) dataSTORE(key, data)

Lookup service

LOOKUP(key) host IP address
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Structure of P2P Multicast Systems

} Extend network functionality by 
providing multicast services

} Usually build a multicast tree 
that dynamically adapts to 
improve suboptimal overlay 
meshes.

} Overlay is unstructured and 
optimizations are done by using 
measurement-based heuristics

} ESM, Nice, Overcast, ALMI
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Structured vs. Unstructured P2P

} Many file sharing P2P systems are structured: 
} A small subset of nodes meeting presubscribed conditions are 

eligible to become neighbors
} The goal here is to bound the cost of locating objects and the 

number of network hops

} Many multicast/broadcast P2P systems are not structured: 
} The goal here is maximizing performance in terms of 

throughput and latency
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Why Lookup Services

Internet

N1 N2 N3

N6N5
N4

Publisher

Put (Key=“cs7610_18”
Value=file data…)

Client
Get(key=“cs7610_18”)

?
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Challenges for Lookup Services

} Availability
} Scalability
} Complexity
} Exact-match searching vs. approximate marching
} General lookup vs specialized lookup
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Architectures for Lookup Services: 
Centralized

} Central index server maintaining the list of files available 
in the system

} Upon joining, a node sends the list of files it stores locally, 
to the central index server

} When performing a search, a node contacts the central 
index server to find out the location of the file

} Vulnerable to single point of failures
} Maintains O(N) state, costly to maintain the state
} Example: Napster
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Architectures for Lookup Services: 
Flooded Query

} There is no centralized index server
} Each node stores the list of the files it stores locally, no 

cost on join
} When performing a search, a node floods the query to 

every other machine in the network
} More robust than the centralized approach, avoids the 

single point of failure
} Inefficient, worst case O(N) messages per lookup
} Example: Gnutella 
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Architectures for Lookup Services: 
Rooted Query

} Completely distributed
} Use a more efficient key-based routing in order to bound 

the cost of lookup
} Less robust than flooded query approach, but more 

efficient
} Example: Chord, Pastry, Tapestry, Kademlia
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Distributed Hash Tables

} Decentralized distributed systems that partition a set of 
keys among participating nodes

} Goal is to efficiently route messages to the unique owner 
of any given key

} Typically designed to scale to large numbers of nodes and 
to handle continual node arrivals and failures

} Examples: Chord, CAN, Pastry,Tapestry
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DHT Design Goals

} Decentralized system: 
} One node needs to coordinate with a limited set of 

participants to find the location of a file; should work well in 
the presence of dynamic membership 

} Scalability: 
} The system should function efficiently even with thousands or 

millions of nodes

} Fault tolerance: 
} The system should be reliable even with nodes continuously 

joining, leaving, and failing
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DHT: Keys and Overlays

} Key space: 
} Ownership of keys is split among the nodes according to some 

partitioning scheme that maps nodes to keys

} Overlay network: 
} Nodes self organize in an overlay network;  each node 

maintains a set of links to other nodes (its neighbors or 
routing table). 

} Overlay and routing information is used to locate an object 
based on the associated key
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DHT: Storing an Object 

} Compute key according to the object-key mapping  
method

} Send message store(k,data) to any node participating in 
the DHT

} Message is forwarded from node to node through the 
overlay network until it reaches the node S responsible 
for key k as specified by the keyspace partitioning method

} Store the pair (k,data) at node S (sometimes the object is 
stored at several nodes to deal with node failures)
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DHT: Retrieving an Object

} Compute key according to the object-key mapping 
method

} Send a message to any DHT node to find the data 
associated with k with a message retrieve(k) 

} Message is routed through the overlay to the node S 
responsible for k

} Retrieve object from node S 
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Key Partitioning

} Key partitioning: defines    
what node “owns what keys” <=> ”stores what objects”
} Removal or addition of nodes should not result in entire 

remapping of key space since this will result in a high cost in 
moving the objects around

} Use consistent hashing to map keys to nodes. A function d(k1,k2) 
defines the distance between keys k1 to key k2. Each node is 
assigned an identifier (ID). A node with ID i owns all the keys for 
which i is the closest ID, measured according to distance function 
d.

} Consistent hashing has the property that removal or addition of 
one node changes only the set of keys owned by the nodes with 
adjacent IDs, and leaves all other nodes unaffected. 

DHTs20



Overlay Networks and Routing

} Nodes self-organize in a logical network defined by the 
set of links to other nodes each node must maintain

} Routing: 
} Greedy algorithm, at each step, forward the message to the 

neighbor whose ID is closest to k. 
} When there is no such neighbor, then this is the closest node, 

which must be the owner of key k  
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2: Chord



CHORD

} Efficient lookup of a node which stores data items for a 
particular search key.

} Provides only one operation: given a key, it maps the key 
onto a node.

} Example applications:
} Co-operative mirroring
} Time-shared storage
} Distributed indexes
} Large-scale combinatorial search
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Design Goals

} Load balance: distributed hash function, spreading keys 
evenly over nodes

} Decentralization: CHORD is fully distributed, nodes have 
symmetric functionality, improves robustness

} Scalability: logarithmic growth of lookup costs with 
number of nodes in network

} Availability: CHORD guarantees correctness, it 
automatically adjusts its internal tables to ensure that the 
node responsible for a key can always be found
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Assumptions

} Communication in underlying network is both symmetric 
and transitive

} Assigns keys to nodes with consistent hashing
} Hash function balances the load
} Participants are correct, nodes can join and leave at any 

time
} Nodes can fail
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Chord Rings

} Key identifier = SHA-1(key)
} Node identifier = SHA-1(IP address)
} Consistent hashing function assigns each node and key an 

m-bit identifier using SHA-1 
} Mapping key identifiers to node identifiers:

} Identifiers are ordered on a circle modulo 2m called a chord 
ring.

} The circle is split into contiguous segments whose 
endpoints are the node identifiers. If i1 and i2 are two 
adjacent IDs, then the node with ID greater identifier 
i2 owns all the keys that fall between i1 and i2.
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Example of Key Partitioning in Chord

m = 6
10 nodes

N14

N1

N56

N51

N48

N42

N21

N32N38

K10K54

K24

K30K38

N8
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How to Perform Key Lookup

} Assume that each node knows only how to contact its
current successor node on the identifier circle, then all 
node can be visited in linear order.

} When performing a search, the query for a given 
identifier could be passed around the circle via these 
successor pointers until they encounter the node that 
contains the key corresponding to the search.
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Example of Key Lookup Scheme

N1

N8

N14

N21N32

N38

N42

N48

K45

succesor(k) = first node whose ID is >= ID of k in identifier space
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Scalable Key Location

} To accelerate lookups, Chord maintains additional routing 
information (m entries): finger table 

} The ith entry in the table at node n contains the identity 
of the first node s that succeeds n by at least 2i-1 on the
identifier circle.

} s = successor(n+2i-1).
} s is called the ith finger of node n
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Scalable Lookup Scheme

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

N1

N8

N14

N21
N32

N38

N42

N48

N51

N56 Finger Table for N8

finger 1,2,3

finger 4

finger 6

finger [i] = first node that succeeds (n+2i-1)mod2m

finger 5

m = 6
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Scalable Lookup

} Each node has finger entries at power of two intervals
around the identifier circle

} Each node can forward a query at least halfway along the 
remaining distance between the node and the target 
identifier.
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Lookup Using Finger Table

N1

N8

N14

N21N32

N38

N42

N51

N56

N48

K54
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Node Joins and Failures/Leaves

} When a node N joins the network, some of the keys
previously assigned to N’s successor should become 
assigned to N. 

} When node N leaves the network, all of its assigned keys 
should be reassigned to N’s successor.

} How to deal with these cases? 
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Node Joins and Stabilizations

} Everything relies on successor pointer.
} Up to date successor pointer is sufficient to guarantee 

correctness of lookups
} Idea: run a “stabilization” protocol periodically in the 

background to update successor pointer and finger table.
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Stabilization Protocol

} Guarantees to add nodes in a fashion to preserve 
reachability

} Does not address the cases when a Chord system thas 
split into multiple disjoint cycles, or a single cycle that 
loops multiple times around the identifier space
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Stabilization Protocol (cont.)

} Each time node N runs stabilize protocol, it asks its 
successor for its predecessor p, and decides whether p
should be N’s successor instead.

} Stabilize protocol notifies node N’s successor of N’s 
existence, giving the successor the chance to change its 
predecessor to N.

} The successor does this only if it knows of no closer 
predecessor than N.
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Impact of Node Joins on Lookups

} If finger table entries are current then lookup finds the 
correct successor in O(log N) steps

} If successor pointers are correct but finger tables are 
incorrect, correct lookup but slower

} If incorrect successor pointers, then lookup may fail
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Voluntary Node Departures

} Leaving node may transfers all its keys to its successor
} Leaving node may notify its predecessor and successor 

about each other so that they can update their links
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Node Failures

} Stabilize successor lists: 
} Node N reconciles its list with its successor S by copying S’s 

successor list, removing its last entry, and prepending S to it. 
} If node N notices that its successor has failed, it replaces it 

with the first live entry in its successor list and reconciles its 
successor list with its new successor.
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CHORD Summary

} Efficient location of the node that stores a desired data 
item is a fundamental problem in P2P networks

} Separates correctness (successor) from performance 
(finger table)

} Chord protocol solves it  in a efficient decentralized 
manner
} Routing information: O(log N) nodes
} Lookup: O(log N) nodes
} Update: O(log2 N) messages

} It also adapts dynamically to the topology changes 
introduced during the run
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3: Attacks against CHORD



Node ID Assignment Implications

} Node ID 
determines where 
will the node be 
placed in the 
structured overlay

} Determines who 
the neighbors are 
going to be

} Determines what 
objects a node will 
hold

m = 6
10 nodes

N14

N1
N56

N51

N48

N42
N21

N32N38

K10K54

K24

K30K38

N8
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Attacks Based on Node ID Assignment 

} What if attacker can choose the ID of a node? 
} Surround a victim node
} Partition a p2p network
} Can control what object will be a replica for
} Holding objects allow an attacker to delete, corrupt or deny 

access to objects

} Can an attacker choose the ID of a node?
} In some systems ID is randomly generated
} In some systems ID is the hash of the IP address
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Sybil Attack

} Attack particular to peer networks, a malicious attacker 
takes/forges multiple identities

} Result: attacker controls a significant part of the system while 
correct nodes are not aware of this, they see different 
identities
} destroy cohesion of the overlay
} observe network status
} slow down, destroy overlay
} DoS

} How to ensure/validate distinct identities refer to distinct 
entities?
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Evaluating Identity

} Straightforward form of identity: secure hash of a public 
key

} How to evaluate/learn the identity of other entities
} Use a trusted agency (learn from trusted source)
} A node has a direct way of validating other nodes - direct 

validation (learn directly)
} Using other untrusted agencies - indirect validation (learn from 

others)

} Which one is best?
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} Utilize computational tasks to validate distinctness;
} validate distinctness of two entities by getting them to  

perform some task (for example a computational puzzle) that 
a single entity could not

} can not assume homogeneous resources, only minimum; 
faulty entity could have more than minimum

} The goal is to make it practical impossible for an adversary 
to have challenges issued simultaneously, limit the number of 
identities he can forge

Direct and Indirect Validation 
(Untrusted Sources)

DHTs47



Direct Validation Limitations

} Even with severely resource constrains, a faulty entity can 
counterfeit a constant number of identities

} Each correct entity must simultaneously validate all the 
identities it is presented otherwise a faulty entity can 
counterfeit an unbounded number of identities 
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Indirect Validation

} A sufficiently large set of faulty entities can counterfeit an 
unbounded number of identities

} All entities in the system must perform their identity 
validations concurrently, otherwise a faulty identity can 
counterfeit a constant number of multiple identities
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Certified (Secure) NodeID Assignment

} Delegate ID generation to trusted CAs
} Bind IPs with nodeIds such that colluding attackers can not 

exchange certificates 
} Nodes must pay for certificates to prevent attackers from 

buying many "correct" certificates 

} Works for static IP addresses
} Does not solve all problems: what happens if the IP 

changes?
} What happens if the trusted CA is not available or can 

not be reached?
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Certified (Secure) NodeID Assignment

} How about distributed ID generation with periodic 
renewal of distributed IDs 
} Addresses single point of failure
} Requires techniques to moderate the rate at which attackers 

can acquire node IDs
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Routing Table Maintenance

} Routing table contains 
information about where 
to ‘look next’

} Table is updated based 
on information from 
other nodes

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

Finger Table for N8

finger [k] = first node that succeeds (n+2k-1)mod2m

m = 6
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Attack Against Maintaining Routing Table

} Attackers can easily supply ‘malicious’ updates or can 
return incorrect lookup
} point to faulty or non-existent nodes
} fake the closest node
} lie about next hop 

} Result: lookup will fail (denial of information to a node) 
or the lookup algorithm will have sub-optimal 
performance
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Secure Routing Table Maintenance

} Constrained Routing Tables: Identify invariants in the system 
and look for violations of the invariants

} Maintain two routing tables - one that uses proximity 
information and one that constrains entries to "specific" values
} Proximity routing used in normal operation
} Constrained routing used when failures occur:

} Other proposed solutions involve anonymous auditing
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Secure Bootstrapping

} How to securely bootstrap the routing table?
} A new node, n, picks a subset of bootstrap nodes to query 

and join the network
} n uses the bootstrap information to initialize its constrained 

routing table 
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Attacks on Forwarding

} Simply ignore forwarding messages, route to the wrong 
node 
} Failed if ANY one in routing is faulty
} Probability of routing successfully to a replica root is (1-f)h-1

} h is the number of average hops for delivering a message
} h depends on the overlay
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Secure Message Forwarding

} Ensure that with high probability, at least on copy of a 
message reaches every correct replica root

} Collect the prospective set of replica roots from the 
prospective root node

} Apply routing failure test to determine if routing 
worked correctly, If no, use redundant and/or iterative 
routing.
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Testing Routing

} Route Failure Test: 
} Average density of nodeIds per unit of “volume” in the id space is 

greater than the average density of faulty nodes
} Compares density of nodeIds in the neighbor set of the sender with the density 

of nodeIds close to the replica roots of the destination key 
} Have sender contact all prospective roots
} Timeout to detect ignoring routing msgs, selecting the appropriate 

threshold not easy
} Use redundant routing when test fails

} Neighbor set anycast - sends copies of message towards destination until they 
reach a node with the key in its neighbor set. 

} How about false positives and false negatives when performing the routing 
failure test? 

} Redundant routing has high overhead?
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Iterative Routing

} Alternative to redundant routing
} Every lookup answer goes back to the requester that can 

verify that the next hop gets him closer (using the 
distance function) to the node hosting the object 
associated with the requested key

} Iterative routing is more secure, but more expensive 
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What Does Secure Routing Buy Us?

} Prevents attacks at join time: secure nodeID assignment 
and bootstrapping

} Ensure that when a correct node sends a message for a 
particular key, the message reaches all correct replica 
roots for the key with very high probability.

} What about the data? We need other mechanisms, for 
example self-certifying data
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Self-Certifying Data

} Client can check data and only needs to rely on routing when 
certification check fails.

} Reduces the reliance on the redundant, secure routing 
primitive (you still need secure forwarding otherwise there is 
no data to verify in the first place)

} Uses concepts like proactive signature sharing or group 
keys/signatures.

} Self-certifying data can eliminate the overhead of secure 
routing in common cases
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4: Kademlia



Kademlia in a Nutshell

} Similar with other services, IDs based on SHA-1 hash into 
a 160 bits space.

} Closeness between two objects measured as their 
bitwise XOR interpreted as an integer.

} distance(a, b) = a XOR b
} Distance is symmetric, dist (a,b) = dist (b,a)
} Uses parallel asynchronous queries to avoid timeout 

delays of the failed nodes. Routes are selected based on 
latency 

} Kademlia uses tree-based routing
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Kademlia Binary Tree

} Start from root, for any given node, dividing the binary 
tree into a series of successively lower subtrees that do 
not contain the node and each correspond to a k-bucket

} Every node keeps track of at least one node from each of 
its subtrees. 

} Every node keeps a list of (IP, Port, NodeID) triples, and 
(key, value) tuples for further exchanging information with 
others.
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Subtrees for a node 0011……

Kademlia Binary Tree
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An example of lookup:  node 0011 is searching for 
1110……in the network

Kademlia Search
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Kademlia Lookup

} Locate the k closest nodes to a given nodeID. 
} Uses a recursive algorithm for node lookups.

} The lookup initiator starts by picking a node from its closest 
non-empty k-bucket.

} The initiator then sends parallel, asynchronous FIND_NODE 
to the a nodes it has chosen.

} The initiator resends the FIND_NODE to nodes it has learned 
about from previous requests. 

} If a round of FIND_NODES fails to return a node any closer 
than the closest already seen, the initiator resends the 
FIND_NODE to all of the k closest nodes it has not already 
queried.
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Kademlia Keys Store

} To store a (key,value) pair, a participant locates the k 
closest nodes to the key.

} Additionally, each node re-publishes (key,value) pairs as 
necessary to keep them alive

} Kademlia’s current application (file sharing), requires the 
original publisher of a (key,value) pair to republish it every 
24 hours. Otherwise, (key,value) pairs expire 24 hours 
after publication.
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Kademlia Cost

} Operation cost
} As low as other popular protocols
} Look up, O(logN)
} Join or leave, O(log2N)

} Fault tolerance and concurrent change
} Handles well, for the use of k-buckets

} Proximity routing
} Kademlia can choose from a nodes that has lower latency
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