

7610: Distributed Systems

Chubby. Zookeeper.

REQUIRED READING

- The Chubby Lock Service for Loosely-Coupled Distributed Systems OSDI 2006.
- ZooKeeper: Wait-free coordination for Internet-scale systems. Usenix 2010
- Zab: High-performance broadcast for primary-backup systems. DSN 2011

 Slides prepare from talks of Chubby and Zookeeper authors

1: Chubby

Chubby

- A coarse-grained lock service
 - Provides a means for distributed systems to synchronize access to shared resources
 - Uses advisory locks
- Intended for use by "loosely-coupled distributed systems"
- Goals
 - High availability
 - Reliability
 - Small storage
 - Easy-to-understand semantics

Advisory vs. Mandatory Locking

Advisory (unenforced) locking:

- Requires cooperation from the participating processes to ensure serialization.
- Each process tries to acquire a lock before writing.

Mandatory locking:

- Does not require cooperation from the participating processes.
- Kernel checks every open, read, and write to verify that the calling process is not violating a lock on the given file.

Why Not Mandatory Locks?

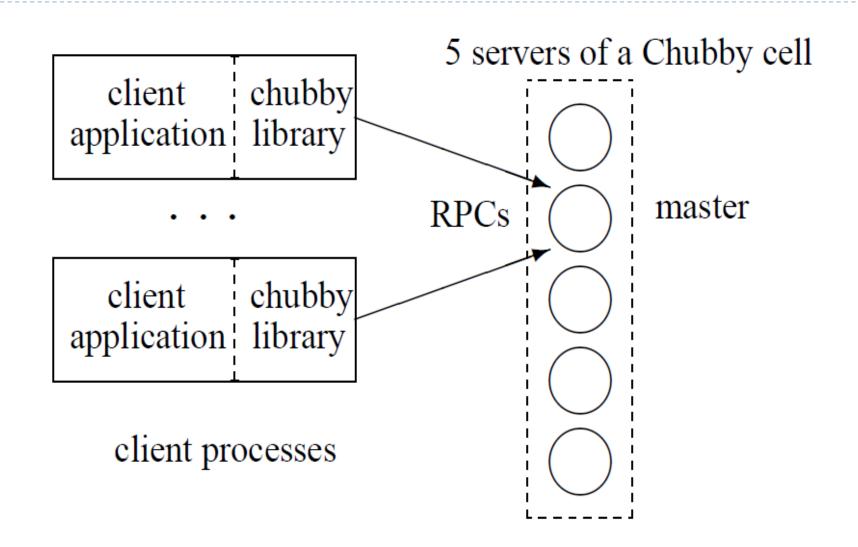
- Locks represent client-controlled resources; how can Chubby enforce this?
- Mandatory locks imply shutting down client apps entirely to do debugging
 - Shutting down distributed applications much trickier than in single-machine case

How is Chubby Used at Google

- GFS: Elect a master
- BigTable: master election, client discovery, table service locking
- Well-known location to bootstrap larger systems: store small amount of meta-data, as the root of the distributed data structures
- Partition workloads
- Name service because of its consistent client caching
- Locks are coarse: held for hours or days

External Interface

- Organized as cells (5 replicas)
- Presents a simple distributed file system
- Clients can open/close/read/write files
 - Reads and writes are whole-file
 - Supports advisory reader/writer locks
 - Clients can register for notification of file update


How are Files used as Locks

- Files can have several attributes
 - The contents of the file is one (primary) attribute
 - Owner of the file
 - Permissions
 - Date modified
 - Whether the file is locked or not

Example: Use Chubby for Master Election

- All replicas try to acquire a write lock on a designated file.
- ▶ The replica who gets the lock is the master.
- Master can then write its address to file; other replicas can read this file to discover the chosen master name.
- Chubby can also be used as a name service.

Chubby Cell

Chubby and Consensus

- ▶ Chubby cell is usually 5 replicas (2f+1), tolerates 2 failures
 - > 3 replicas must be alive for cell to work (otherwise it blocks)
- Replicas in Chubby must agree on their own master and official lock values
- Uses PAXOS algorithm (provides consensus in an asynchronous system)
 - Memory for individual "facts" in the network
 - A fact is a binding from a variable to a value

Paxos: Processor Assumptions

- Operate at arbitrary speed
- Independent, random failures
- Process with stable storage may rejoin protocol after failure
- Do not lie, collude, or attempt to maliciously subvert the protocol

Paxos: Network Assumptions

- ▶ All processors can communicate with one another
- Messages are sent asynchronously and may take arbitrarily long to deliver
- Order of messages is not guaranteed: they may be lost, reordered, or duplicated
- Messages, if delivered, are not corrupted in the process

Paxos in Chubby

- Replicas in a cell initially use Paxos to establish the leader.
- Majority of replicas must agree
- Replicas promise not to try to elect new master for at least a few seconds ("master lease")
- Master lease is periodically renewed

Client Updates

- All replicas are listed in DNS
- All client updates go through master
- Master updates official database; sends copy of update to replicas
 - Majority of replicas must acknowledge receipt of update before master writes its own value
- Clients find master through DNS
 - Contacting replica causes redirect to master

Replica Failure

- If a replica fails and does not recover for a long time (a few hours), a fresh machine is selected to be a new replica, replacing the failed one
- New replica
 - Updates the DNS
 - Obtains a recent copy of the database
- Current master polls DNS periodically to discover new replicas

Chubby File System

- ▶ Looks like simple UNIX FS: /ls/foo/wombat
 - All filenames start with '/ls' ("lockservice")
 - Second component is Chubby cell ("foo")
 - Rest of the path is anything you want
- No inter-directory move operation
- Permissions use ACLs, non-inherited
- No symlinks/hardlinks
- Files have version numbers attached
- Opening a file receives handle to file
 - Clients cache all file data including file-not-found

ACLs and File Handles

Access Control List (ACL)

- ▶ A node has three ACL names (read/write/change)
- An ACL name is a name to a file in the ACL directory
- ▶ The file lists the authorized users

File handle:

- Has check digits encoded in it; cannot be forged
- Sequence number: a master can tell if this handle is created by a previous master
- Mode information at open time: If previous master created the handle, a newly restarted master can learn the mode information

Use of Sequences

- Lock problems in distributed systems
 - A holds a lock L, issues request write W, then fails
 - B acquires L (because A fails), performs actions
 - Warrives (out-of-order) after B's actions
- One approach is to prevent other clients from getting the lock if a lock become inaccessible or the holder has failed
- Another approach: Sequencer
 - A lock holder can obtain a sequencer from Chubby
 - It attaches the sequencer to any requests that it sends to other servers (e.g., Bigtable)
 - The other servers can verify the sequencer information

Chubby Events

- Master notifies clients if files modified, created, deleted, lock status changes, etc
- Clients can subscribe to events (up-calls from Chubby library)
 - File contents modified: if the file contains the location of a service, this event can be used to monitor the service location
 - Master failed over
 - Child node added, removed, modified
 - Handle becomes invalid: probably communication problem
 - Lock acquired (rarely used)
 - Locks are conflicting (rarely used)
- Push-style notifications decrease bandwidth from constant polling

APIs

- Open()
 - Mode: read/write/change ACL; Events; Lock-delay
 - Create new file or directory?
- Close()
- GetContentsAndStat(), GetStat(), ReadDir()
- SetContents(): set all contents; SetACL()
- Delete()
- Locks: Acquire(), TryAcquire(), Release()
- Sequencers: GetSequencer(), SetSequencer(), CheckSequencer()

Example: Primary Election

```
Open("write mode");
If (successful) {
       // primary
  SetContents("identity");
Else {
 // replica
  open ("read mode", "file-modification event");
  when notified of file modification:
         primary= GetContentsAndStat();
```

Client Caching

- Clients cache all file content
- Strict consistency:
 - Lease based
 - Master will invalidate cached copies upon a write request
- Client must send respond to Keep-Alive message from server at frequent interval
- Keep-Alive messages include invalidation requests
 - Responding to Keep-Alive implies acknowledgement of cache invalidation
- Modification only continues after all caches invalidated or Keep-Alive time out

Client Sessions

- Sessions maintained between client and server
 - Keep-alive messages required to maintain session every few seconds
 - A client sends keep-alive requests to a master
 - A master responds by a keep-alive response
- If session is lost, server releases any client-held handles.
- What if master is late with next keep-alive?
 - Client has its own (longer) timeout to detect server failure

Master Failure

- If client does not hear back about Keep-Alive in local lease timeout, session is in jeopardy
 - Clear local cache
 - Wait for "grace period" (about 45 seconds)
 - Continue attempt to contact master
 - Successful attempt => ok; jeopardy over
 - Failed attempt => session assumed lost
- If replicas lose contact with master
 - ▶ They wait for grace period (4—6 secs)
 - On timeout, hold new election

Master Fail-over: Grace Period

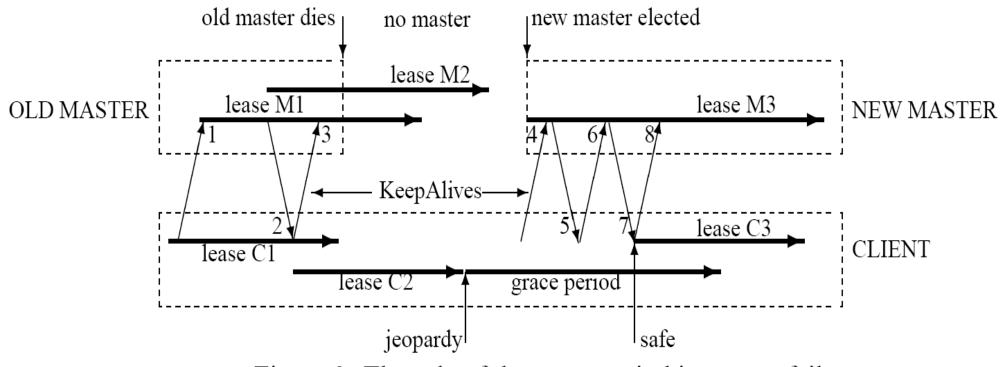


Figure 2: The role of the grace period in master fail-over

Reliability

- Started out using replicated Berkeley DB
- Now uses custom write-thru logging DB
- Entire database periodically sent to GFS
 - In a different data center
- Chubby replicas span multiple racks

Scalability

- ▶ 90K+ clients communicate with a single Chubby master (2 CPUs)
- System increases lease times from 12 sec up to 60 secs under heavy load
- Clients cache virtually everything
- ▶ Data is small all held in RAM (as well as disk)

2: Zookeeper

ZooKeeper

- Provides to HDSF functionality similar to that provided by Chubby to GFS
- Design inspired from Chubby
- Zookeeper is used to manage master election and store other process metadata
- Chubby and Zookeeper are both much more than a distributed lock service: implementations of highly available, distributed metadata file systems

ZooKeeper

- Aims to provide a simple and high performance kernel for building more complex client
- Wait free
- FIFO
- No lock
- Pipeline architecture

What is coordination?

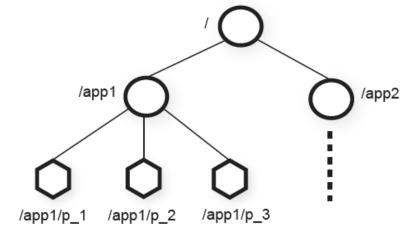
- Group membership
- Leader election
- Dynamic configuration
- Status monitoring
- Queuing
- Critical sections

Contributions

- Coordination kernel
 - Wait-free coordination
- Coordination recipes
 - Build higher primitives
- Experience with Coordination
 - Some application use ZooKeeper

Zookeeper Service

Znode


- In-memory data node in the Zookeeper data
- Have a hierarchical namespace
- UNIX like notation for path

Types of Znode

- Regular: Clients manipulate regular znodes by creating and deleting them explicitly;
- Ephemeral: Clients create such znodes, and they either delete them explicitly, or let the system remove them automatically

Flags of Znode

Sequential flag: Nodes created with the sequential flag set have the value of a monotonically increasing counter appended to its name. If n is the new znode and p is the parent znode, then the sequence value of n is never smaller than the value in the name of any other sequential znode ever created under p.

Zookeeper Service

Watch Mechanism

- Get notification
- One time triggers

Other properties of Znode

- Znode is not designed for data storage, instead it stores metadata or configuration
- Can store information like timestamp version

Session

- A connection to server from client is a session
- Timeout mechanism

Client API

- Create(path, data, flags)
- Delete(path, version)
- Exist(path, watch)
- getData(path, watch)
- setData(path, data, version)
- getChildren(path, watch)
- Sync(path)
- Two versions
 - Synchronous: I when it needs to execute a single ZooKeeper operation and it has no concurrent tasks to execute,
 - Asynchronous: multiple outstanding ZooKeeper operations and other tasks executed in parallel.

Guarantees

Linearizable writes

 All requests that update the state of ZooKeeper data are serializable and respect precedence

FIFO client order

All requests are in order that they were sent by client

Configuration Management

- Problem: dynamic configuration propose
- Solution:
 - Simplest way is to make up a znode c for saving configuration
 - Other processes set the watch flag on c
 - The notification just indicates there is an update without telling how many time updates occurs

Rendezvous

Problem: Configuration of the system may not be sure at the beginning (For example, a client may want to start a master process and several worker processes, but the starting processes is done by a scheduler, so the client does not know ahead of time information such as addresses and ports that it can give the worker processes to connect to the master)

Solution

- Create a znode r as a rendezvous point
- When master starts he fills the configuration in r
- Workers watch node r

Group Membership

- Create a znode g
- Each process create a znode under g in ephemeral mode:
 e. If the process fails or ends, the znode that represents it under zg is automatically removed.
- Watch g for group information
- Processes can obtain group information by simply listing the children of zg

Simple Lock

- Create a znode I for locking
- If one gets to create I he gets the lock
- Others who fail to create watch I, waiting for the lock to be released
- A client releases the lock when it dies or explicitly deletes the znode.
- Problems: herd effect

Simple Lock without herd effect

We line up all the clients requesting the lock and each client obtains the lock in order of request arrival

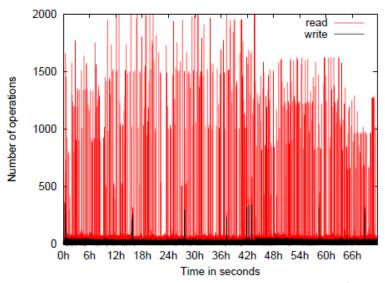
```
Lock
1 n = create(l + "/lock-", EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if n is lowest znode in C, exit
4 p = znode in C ordered just before n
5 if exists(p, true) wait for watch event
6 goto 2

Unlock
1 delete(n)
```

Read/Write Lock

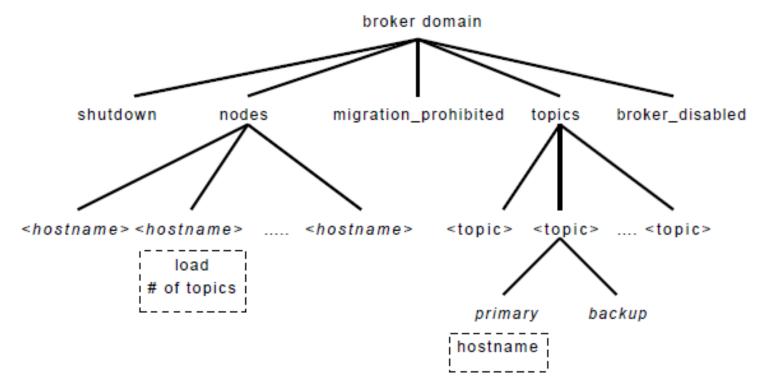
```
Write Lock
1  n = create(l + "/write-", EPHEMERAL|SEQUENTIAL)
2  C = getChildren(l, false)
3  if n is lowest znode in C, exit
4  p = znode in C ordered just before n
5  if exists(p, true) wait for event
6  goto 2

Read Lock
1  n = create(l + "/read-", EPHEMERAL|SEQUENTIAL)
2  C = getChildren(l, false)
3  if no write znodes lower than n in C, exit
4  p = write znode in C ordered just before n
5  if exists(p, true) wait for event
6  goto 3
```


Double Barrier

- ▶ To synchronize the beginning and the end of computation
- Create a znode b, and every process needs to register on it, by adding a znode under b
- Set a threshold that starts the process

Application


Fetching Service

- Using ZooKeeper for recovering from failure of masters
- Configuration metadata and leader election

Application

- Yahoo Message Broker
 - A distributed publish-subscribe system

Implementation

- Provides high availability by replicating the ZooKeeper data on each server that composes the service
 - an in-memory database containing the entire data tree
- Servers fail by crashing, and such faulty servers may later recover
- Clients submit request:
 - Write requests require coordination among the servers; they use an agreement protocol (an implementation of atomic broadcast)
 - Read requests do not require coordination; , a server reads the state of the local database and generates a response to the request

48

3: Zab

Zab

- It provides an important service for Zookeeper
- Atomic broadcast for primary-backup schemes
- Addresses the scenario when the primary (i.e the leader) fails
- Semantics
 - Primary order: similar but different from causal order
- Assumes that state changes are idempotent, i.e. applying the same state multiple times does not lead to inconsistencies
 - At least once semantics is enough

Zab vs Group Communication

- Zab does borrow some concepts from group communication
- Group communication also uses the notion of VIEW to define membership
 - View changes take place because of join/leave, process crashes and network partitions
- Zab uses VIEWs to identify leadership of primaries
 - View changes take place when a primary crashed or lost support from a quorum

Other features

- Support for prefix of transactions submitted concurrently by a client are applied in FIFO order
- ▶ Fast recovery from primary crashes: allows the primary to identify the sequence of transactions to recover the application state
 - Does not need to reexecute orderings for pending transactions

Process roles

- All process either Lead or Follow
- Followers
 - Maintain a history of transactions
- Leader
 - Can change
- Transactions are identified by <e, c>
 - e is the epoch number of the leader
 - c: epoch counter

Properties of the PO Broadcast

- Integrity
 - Only broadcast transactions are delivered
 - Leaders recovers before broadcasting new transactions
- Total order
- Agreement
 - Followers deliver the same transaction and in the same order
- They are defined with respect to the leadership of a leader
 - Similar with the way such properties were defined in the context of Virtual Synchrony

Primary Order

- Local order:
 - Order in which transactions are accepted by the leader
- ▶ Global order:
 - Defined by the order of epochs

Zab

- ▶ Phase 0 Leader election
 - Prospective leader L elected
- ▶ Phase I Discovery
- Phase 2
 - Followers promise not to go back to previous epochs
 - Followers send to the leader L their last epoch and history
 - L selects longest history of latest epoch
- ▶ Phase 3 Synchronization
 - Sends new history to followers
 - Followers confirm leadership
- ▶ Phase 3 Broadcast
 - Proposes new transactions
- Commits if quorum acknowledges

Zab vs Paxos vs Viewstamped Replication

- ▶ Paxos, VSR, and Zab are three well-known replication protocols for asynchronous environments that admit bounded numbers of crash failures.
- Compute-intensive services are better off with a passive replication strategy, such as used in VSR and Zab (provided that state updates are of a reasonable size).
- To achieve predictable low-delay performance for short operations during both normal case execution and recovery, an active replication strategy without designated majorities, such as used in Paxos, is the best option.