
Cristina Nita-Rotaru

7610: Distributed Systems

Chubby. Zookeeper.

REQUIRED READING

} The Chubby Lock Service for Loosely-
Coupled Distributed Systems OSDI
2006.

} ZooKeeper: Wait-free coordination for
Internet-scale systems. Usenix 2010

} Zab: High-performance broadcast for
primary-backup systems. DSN 2011

} Slides prepare from talks of Chubby and
Zookeeper authors

Chubby. Zookeeper. Zab2

1: Chubby

Chubby

} A coarse-grained lock service
} Provides a means for distributed systems to synchronize

access to shared resources
} Uses advisory locks

} Intended for use by “loosely-coupled distributed
systems”

} Goals
} High availability
} Reliability
} Small storage
} Easy-to-understand semantics

Chubby. Zookeeper. Zab4

Advisory vs. Mandatory Locking

} Advisory (unenforced) locking:
} Requires cooperation from the participating processes to

ensure serialization.
} Each process tries to acquire a lock before writing.

} Mandatory locking:
} Does not require cooperation from the participating

processes.
} Kernel checks every open, read, and write to verify that the

calling process is not violating a lock on the given file.

Chubby. Zookeeper. Zab5

Why Not Mandatory Locks?

} Locks represent client-controlled resources; how can
Chubby enforce this?

} Mandatory locks imply shutting down client apps entirely
to do debugging
} Shutting down distributed applications much trickier than in

single-machine case

Chubby. Zookeeper. Zab6

How is Chubby Used at Google

} GFS: Elect a master
} BigTable: master election, client discovery, table service

locking
} Well-known location to bootstrap larger systems: store

small amount of meta-data, as the root of the distributed
data structures

} Partition workloads
} Name service because of its consistent client caching
} Locks are coarse: held for hours or days

Chubby. Zookeeper. Zab7

External Interface

} Organized as cells (5 replicas)
} Presents a simple distributed file system
} Clients can open/close/read/write files

} Reads and writes are whole-file
} Supports advisory reader/writer locks
} Clients can register for notification of file update

Chubby. Zookeeper. Zab8

How are Files used as Locks

} Files can have several attributes
} The contents of the file is one (primary) attribute
} Owner of the file
} Permissions
} Date modified
} Whether the file is locked or not

Chubby. Zookeeper. Zab9

Example: Use Chubby for Master Election

} All replicas try to acquire a write lock on a designated
file.

} The replica who gets the lock is the master.
} Master can then write its address to file; other replicas

can read this file to discover the chosen master name.
} Chubby can also be used as a name service.

Chubby. Zookeeper. Zab10

Chubby Cell

Chubby. Zookeeper. Zab11

Chubby and Consensus

} Chubby cell is usually 5 replicas (2f+1), tolerates 2 failures
} 3 replicas must be alive for cell to work (otherwise it blocks)

} Replicas in Chubby must agree on their own master and
official lock values

} Uses PAXOS algorithm (provides consensus in an
asynchronous system)
} Memory for individual “facts” in the network
} A fact is a binding from a variable to a value

Chubby. Zookeeper. Zab12

Paxos: Processor Assumptions

} Operate at arbitrary speed
} Independent, random failures
} Process with stable storage may rejoin protocol after

failure
} Do not lie, collude, or attempt to maliciously subvert the

protocol

Chubby. Zookeeper. Zab13

Paxos: Network Assumptions

} All processors can communicate with one another
} Messages are sent asynchronously and may take

arbitrarily long to deliver
} Order of messages is not guaranteed: they may be lost,

reordered, or duplicated
} Messages, if delivered, are not corrupted in the process

Chubby. Zookeeper. Zab14

Paxos in Chubby

} Replicas in a cell initially use Paxos to establish the leader.
} Majority of replicas must agree
} Replicas promise not to try to elect new master for at

least a few seconds (“master lease”)
} Master lease is periodically renewed

Chubby. Zookeeper. Zab15

Client Updates

} All replicas are listed in DNS
} All client updates go through master
} Master updates official database; sends copy of update to

replicas
} Majority of replicas must acknowledge receipt of update before

master writes its own value

} Clients find master through DNS
} Contacting replica causes redirect to master

Chubby. Zookeeper. Zab16

Replica Failure

} If a replica fails and does not recover for a long time (a
few hours), a fresh machine is selected to be a new
replica, replacing the failed one

} New replica
} Updates the DNS
} Obtains a recent copy of the database

} Current master polls DNS periodically to discover new
replicas

Chubby. Zookeeper. Zab17

Chubby File System

} Looks like simple UNIX FS: /ls/foo/wombat
} All filenames start with ‘/ls’ (“lockservice”)
} Second component is Chubby cell (“foo”)
} Rest of the path is anything you want

} No inter-directory move operation
} Permissions use ACLs, non-inherited
} No symlinks/hardlinks
} Files have version numbers attached
} Opening a file receives handle to file

} Clients cache all file data including file-not-found

Chubby. Zookeeper. Zab18

ACLs and File Handles

} Access Control List (ACL)
} A node has three ACL names (read/write/change)
} An ACL name is a name to a file in the ACL directory
} The file lists the authorized users

} File handle:
} Has check digits encoded in it; cannot be forged
} Sequence number: a master can tell if this handle is created by

a previous master
} Mode information at open time: If previous master created the

handle, a newly restarted master can learn the mode
information

Chubby. Zookeeper. Zab19

Use of Sequences

} Lock problems in distributed systems
} A holds a lock L, issues request write W, then fails
} B acquires L (because A fails), performs actions
} W arrives (out-of-order) after B’s actions

} One approach is to prevent other clients from getting the
lock if a lock become inaccessible or the holder has failed

} Another approach: Sequencer
} A lock holder can obtain a sequencer from Chubby
} It attaches the sequencer to any requests that it sends to other

servers (e.g., Bigtable)
} The other servers can verify the sequencer information

Chubby. Zookeeper. Zab20

Chubby Events

} Master notifies clients if files modified, created, deleted, lock
status changes, etc

} Clients can subscribe to events (up-calls from Chubby library)
} File contents modified: if the file contains the location of a service, this

event can be used to monitor the service location
} Master failed over
} Child node added, removed, modified
} Handle becomes invalid: probably communication problem
} Lock acquired (rarely used)
} Locks are conflicting (rarely used)

} Push-style notifications decrease bandwidth from constant
polling

Chubby. Zookeeper. Zab21

APIs

} Open()
} Mode: read/write/change ACL; Events; Lock-delay
} Create new file or directory?

} Close()
} GetContentsAndStat(), GetStat(), ReadDir()
} SetContents(): set all contents; SetACL()
} Delete()
} Locks: Acquire(), TryAcquire(), Release()
} Sequencers: GetSequencer(), SetSequencer(),

CheckSequencer()

Chubby. Zookeeper. Zab22

Example: Primary Election

Open(“write mode”);
If (successful) {

// primary
SetContents(“identity”);

}
Else {

// replica
open (“read mode”, “file-modification event”);
when notified of file modification:

primary= GetContentsAndStat();
}

Chubby. Zookeeper. Zab23

Client Caching

} Clients cache all file content
} Strict consistency:

} Lease based
} Master will invalidate cached copies upon a write request

} Client must send respond to Keep-Alive message from
server at frequent interval

} Keep-Alive messages include invalidation requests
} Responding to Keep-Alive implies acknowledgement of cache

invalidation

} Modification only continues after all caches invalidated or
Keep-Alive time out

Chubby. Zookeeper. Zab24

Client Sessions

} Sessions maintained between client and server
} Keep-alive messages required to maintain session every few

seconds
} A client sends keep-alive requests to a master
} A master responds by a keep-alive response

} If session is lost, server releases any client-held handles.
} What if master is late with next keep-alive?

} Client has its own (longer) timeout to detect server failure

Chubby. Zookeeper. Zab25

Master Failure

} If client does not hear back about Keep-Alive in local
lease timeout, session is in jeopardy
} Clear local cache
} Wait for “grace period” (about 45 seconds)
} Continue attempt to contact master
} Successful attempt => ok; jeopardy over
} Failed attempt => session assumed lost

} If replicas lose contact with master
} They wait for grace period (4—6 secs)
} On timeout, hold new election

Chubby. Zookeeper. Zab26

Master Fail-over: Grace Period

Chubby. Zookeeper. Zab27

Reliability

} Started out using replicated Berkeley DB
} Now uses custom write-thru logging DB
} Entire database periodically sent to GFS

} In a different data center

} Chubby replicas span multiple racks

Chubby. Zookeeper. Zab28

Scalability

} 90K+ clients communicate with a single Chubby master
(2 CPUs)

} System increases lease times from 12 sec up to 60 secs
under heavy load

} Clients cache virtually everything
} Data is small – all held in RAM (as well as disk)

Chubby. Zookeeper. Zab29

2: Zookeeper

ZooKeeper

} Provides to HDSF functionality similar to that provided by
Chubby to GFS

} Design inspired from Chubby
} Zookeeper is used to manage master election and store

other process metadata
} Chubby and Zookeeper are both much more than a

distributed lock service: implementations of highly
available, distributed metadata file systems

Chubby. Zookeeper. Zab31

ZooKeeper

} Aims to provide a simple and high performance kernel for
building more complex client

} Wait free
} FIFO
} No lock
} Pipeline architecture

Chubby. Zookeeper. Zab32

What is coordination?

} Group membership
} Leader election
} Dynamic configuration
} Status monitoring
} Queuing
} Critical sections

Chubby. Zookeeper. Zab33

Contributions

} Coordination kernel
} Wait-free coordination

} Coordination recipes
} Build higher primitives

} Experience with Coordination
} Some application use ZooKeeper

Chubby. Zookeeper. Zab34

Zookeeper Service

} Znode
} In-memory data node in the

Zookeeper data
} Have a hierarchical namespace
} UNIX like notation for path

} Types of Znode
} Regular: Clients manipulate regular znodes by creating and deleting

them explicitly;
} Ephemeral: Clients create such znodes, and they either delete them

explicitly, or let the system remove them automatically
} Flags of Znode

} Sequential flag: Nodes created with the sequential flag set have the
value of a monotonically increasing counter appended to its name.
If n is the new znode and p is the parent znode, then the sequence
value of n is never smaller than the value in the name of any other
sequential znode ever created under p.

Chubby. Zookeeper. Zab35

Zookeeper Service

} Watch Mechanism
} Get notification
} One time triggers

} Other properties of Znode
} Znode is not designed for data storage, instead it stores meta-

data or configuration
} Can store information like timestamp version

} Session
} A connection to server from client is a session
} Timeout mechanism

Chubby. Zookeeper. Zab36

Client API

} Create(path, data, flags)
} Delete(path, version)
} Exist(path, watch)
} getData(path, watch)
} setData(path, data, version)
} getChildren(path, watch)
} Sync(path)
} Two versions

} Synchronous: I when it needs to execute a single ZooKeeper
operation and it has no concurrent tasks to execute,

} Asynchronous: multiple outstanding ZooKeeper operations and
other tasks executed in parallel.

Chubby. Zookeeper. Zab37

Guarantees

} Linearizable writes
} All requests that update the state of ZooKeeper data are

serializable and respect precedence

} FIFO client order
} All requests are in order that they were sent by client

Chubby. Zookeeper. Zab38

Configuration Management

} Problem: dynamic configuration propose
} Solution:

} Simplest way is to make up a znode c for saving configuration
} Other processes set the watch flag on c
} The notification just indicates there is an update without telling

how many time updates occurs

Chubby. Zookeeper. Zab39

Rendezvous

} Problem: Configuration of the system may not be sure at
the beginning (For example, a client may want to start a
master process and several worker processes, but the
starting processes is done by a scheduler, so the client
does not know ahead of time information such as
addresses and ports that it can give the worker processes
to connect to the master)

} Solution
} Create a znode r as a rendezvous point
} When master starts he fills the configuration in r
} Workers watch node r

Chubby. Zookeeper. Zab40

Group Membership

} Create a znode g
} Each process create a znode under g in ephemeral mode:

e. If the process fails or ends, the znode that represents it
under zg is automatically removed.

} Watch g for group information
} Processes can obtain group information by simply listing

the children of zg

Chubby. Zookeeper. Zab41

Simple Lock

} Create a znode l for locking
} If one gets to create l he gets the lock
} Others who fail to create watch l, waiting for the lock to

be released
} A client releases the lock when it dies or explicitly

deletes the znode.
} Problems: herd effect

Chubby. Zookeeper. Zab42

Simple Lock without herd effect

} We line up all the clients requesting the lock and each
client obtains the lock in order of request arrival

Chubby. Zookeeper. Zab43

Read/Write Lock

Chubby. Zookeeper. Zab44

Double Barrier

} To synchronize the beginning and the end of computation
} Create a znode b, and every process needs to register on

it, by adding a znode under b
} Set a threshold that starts the process

Chubby. Zookeeper. Zab45

Application

} Fetching Service
} Using ZooKeeper for recovering from failure of masters
} Configuration metadata and leader election

Chubby. Zookeeper. Zab46

Application

} Yahoo Message Broker
} A distributed publish-subscribe system

Chubby. Zookeeper. Zab47

Implementation

} Provides high availability by replicating the ZooKeeper
data on each server that composes the service
} an in-memory database containing the entire data tree

} Servers fail by crashing, and such faulty servers may later
recover

} Clients submit request:
} Write requests require coordination among the servers; they

use an agreement protocol (an implementation of atomic
broadcast)

} Read requests do not require coordination; , a server reads the
state of the local database and generates a response to the
request

Introduction48

3: Zab

Zab

} It provides an important service for Zookeeper
} Atomic broadcast for primary-backup schemes
} Addresses the scenario when the primary (i.e the leader)

fails
} Semantics

} Primary order: similar but different from causal order

} Assumes that state changes are idempotent, i.e. applying
the same state multiple times does not lead to
inconsistencies
} At least once semantics is enough

Chubby. Zookeeper. Zab50

Zab vs Group Communication

} Zab does borrow some concepts from group
communication

} Group communication also uses the notion of VIEW – to
define membership
} View changes take place because of join/leave, process crashes

and network partitions

} Zab uses VIEWs to identify leadership of primaries
} View changes take place when a primary crashed or lost

support from a quorum

Chubby. Zookeeper. Zab51

Other features

} Support for prefix of transactions submitted concurrently
by a client are applied in FIFO order

} Fast recovery from primary crashes: allows the primary
to identify the sequence of transactions to recover the
application state
} Does not need to reexecute orderings for pending

transactions

Chubby. Zookeeper. Zab52

Process roles

} All process either Lead or Follow
} Followers

} Maintain a history of transactions

} Leader
} Can change

} Transactions are identified by <e, c>
} e is the epoch number of the leader
} c: epoch counter

Chubby. Zookeeper. Zab53

Properties of the PO Broadcast

} Integrity
} Only broadcast transactions are delivered
} Leaders recovers before broadcasting new transactions

} Total order
} Agreement

} Followers deliver the same transaction and in the same order

} They are defined with respect to the leadership of a
leader
} Similar with the way such properties were defined in the

context of Virtual Synchrony

Chubby. Zookeeper. Zab54

Primary Order

} Local order:
} Order in which transactions are accepted by the leader

} Global order:
} Defined by the order of epochs

Chubby. Zookeeper. Zab55

Zab

} Phase 0 – Leader election
} Prospective leader L elected

} Phase 1 – Discovery
} Phase 2

} Followers promise not to go back to previous epochs

} Followers send to the leader L their last epoch and history
} L selects longest history of latest epoch

} Phase 3 – Synchronization
} Sends new history to followers
} Followers confirm leadership

} Phase 3 – Broadcast
} Proposes new transactions

} Commits if quorum acknowledges Chubby. Zookeeper. Zab56

Zab vs Paxos vs Viewstamped
Replication

} Paxos, VSR, and Zab are three well-known replication
protocols for asynchronous environments that admit
bounded numbers of crash failures.

} Compute-intensive services are better off with a passive
replication strategy, such as used in VSR and Zab
(provided that state updates are of a reasonable size).

} To achieve predictable low-delay performance for short
operations during both normal case execution and
recovery, an active replication strategy without designated
majorities, such as used in Paxos, is the best option.

Chubby. Zookeeper. Zab57

