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REQUIRED READING

} The Chubby Lock Service for Loosely-
Coupled Distributed Systems OSDI 
2006.

} ZooKeeper: Wait-free coordination for 
Internet-scale systems. Usenix 2010

} Zab: High-performance broadcast for 
primary-backup systems. DSN 2011

} Slides prepare from talks of Chubby and 
Zookeeper authors
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1: Chubby



Chubby

} A coarse-grained lock service
} Provides a means for distributed systems to synchronize 

access to shared resources
} Uses advisory locks

} Intended for use by “loosely-coupled distributed 
systems”

} Goals
} High availability
} Reliability 
} Small storage
} Easy-to-understand semantics

Chubby. Zookeeper. Zab4



Advisory vs. Mandatory Locking

} Advisory (unenforced) locking: 
} Requires cooperation from the participating processes to 

ensure serialization.
} Each process tries to acquire a lock before writing.

} Mandatory locking: 
} Does not require cooperation from the participating 

processes.
} Kernel checks every open, read, and write to verify that the 

calling process is not violating a lock on the given file. 
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Why Not Mandatory Locks?

} Locks represent client-controlled resources; how can 
Chubby enforce this?

} Mandatory locks imply shutting down client apps entirely 
to do debugging
} Shutting down distributed applications much trickier than in 

single-machine case
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How is Chubby Used at Google

} GFS: Elect a master
} BigTable: master election, client discovery, table service 

locking
} Well-known location to bootstrap larger systems:  store 

small amount of meta-data, as the root of the distributed 
data structures

} Partition workloads
} Name service because of its consistent client caching
} Locks are coarse: held for hours or days
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External Interface

} Organized as cells (5 replicas)
} Presents a simple distributed file system
} Clients can open/close/read/write files

} Reads and writes are whole-file
} Supports advisory reader/writer locks 
} Clients can register for notification of file update
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How are Files used as Locks

} Files can have several attributes
} The contents of the file is one (primary) attribute
} Owner of the file
} Permissions
} Date modified
} Whether the file is locked or not
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Example: Use Chubby for Master Election

} All replicas try to acquire a write lock on a designated 
file. 

} The replica who gets the lock is the master.
} Master can then write its address to file; other replicas 

can read this file to discover the chosen master name.
} Chubby can also be used as a name service.
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Chubby Cell
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Chubby and Consensus

} Chubby cell is usually 5 replicas (2f+1), tolerates 2 failures
} 3 replicas must be alive for cell to work (otherwise it blocks)

} Replicas in Chubby must agree on their own master and 
official lock values

} Uses PAXOS algorithm (provides consensus in an 
asynchronous system)
} Memory for individual “facts” in the network
} A fact is a binding from a variable to a value
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Paxos: Processor Assumptions

} Operate at arbitrary speed
} Independent, random failures
} Process with stable storage may rejoin protocol after 

failure
} Do not lie, collude, or attempt to maliciously subvert the 

protocol
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Paxos: Network Assumptions

} All processors can communicate with one another
} Messages are sent asynchronously and may take 

arbitrarily long to deliver
} Order of messages is not guaranteed: they may be lost, 

reordered, or duplicated
} Messages, if delivered, are not corrupted in the process
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Paxos in Chubby

} Replicas in a cell initially use Paxos to establish the leader. 
} Majority of replicas must agree
} Replicas promise not to try to elect new master for at 

least a few seconds (“master lease”)
} Master lease is periodically renewed
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Client Updates

} All replicas are listed in DNS
} All client updates go through master
} Master updates official database; sends copy of update to 

replicas
} Majority of replicas must acknowledge receipt of update before 

master writes its own value

} Clients find master through DNS
} Contacting replica causes redirect to master
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Replica Failure

} If a replica fails and does not recover for a long time (a 
few hours), a fresh machine is selected to be a new 
replica, replacing the failed one

} New replica  
} Updates the DNS
} Obtains a recent copy of the database

} Current master polls DNS periodically to discover new 
replicas
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Chubby File System

} Looks like simple UNIX FS: /ls/foo/wombat
} All filenames start with ‘/ls’ (“lockservice”)
} Second component is Chubby cell (“foo”)
} Rest of the path is anything you want

} No inter-directory move operation
} Permissions use ACLs, non-inherited
} No symlinks/hardlinks
} Files have version numbers attached
} Opening a file receives handle to file

} Clients cache all file data including file-not-found
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ACLs and File Handles

} Access Control List (ACL)
} A node has three ACL names (read/write/change )
} An ACL name is a name to a file in the ACL directory
} The file lists the authorized users

} File handle:
} Has check digits encoded in it; cannot be forged
} Sequence number: a master can tell if this handle is created by 

a previous master
} Mode information at open time: If previous master created the 

handle, a newly restarted master can learn the mode 
information
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Use of Sequences

} Lock problems in distributed systems
} A holds a lock L, issues request write W, then fails
} B acquires L (because A fails), performs actions
} W arrives (out-of-order) after B’s actions

} One approach is to prevent other clients from getting the 
lock if a lock become inaccessible or the holder has failed

} Another approach: Sequencer
} A lock holder can obtain a sequencer from Chubby
} It attaches the sequencer to any requests that it sends to other 

servers (e.g., Bigtable)
} The other servers can verify the sequencer information
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Chubby Events

} Master notifies clients if files modified, created, deleted, lock 
status changes, etc

} Clients can subscribe to events (up-calls from Chubby library)
} File contents modified: if the file contains the location of a service, this 

event can be used to monitor the service location
} Master failed over
} Child node added, removed, modified
} Handle becomes invalid: probably communication problem
} Lock acquired  (rarely used)
} Locks are conflicting (rarely used)

} Push-style notifications decrease bandwidth from constant 
polling
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APIs

} Open()
} Mode: read/write/change ACL; Events; Lock-delay
} Create new file or directory?

} Close()
} GetContentsAndStat(), GetStat(), ReadDir()
} SetContents(): set all contents; SetACL()
} Delete()
} Locks: Acquire(), TryAcquire(), Release()
} Sequencers: GetSequencer(), SetSequencer(), 

CheckSequencer()
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Example: Primary Election

Open(“write mode”);
If (successful) {

// primary
SetContents(“identity”);

}
Else {

// replica
open (“read mode”, “file-modification event”);
when notified of file modification:

primary= GetContentsAndStat(); 
}
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Client Caching

} Clients cache all file content
} Strict consistency: 

} Lease based
} Master will invalidate cached copies upon a write request

} Client must send respond to Keep-Alive message from 
server at frequent interval

} Keep-Alive messages include invalidation requests
} Responding to Keep-Alive implies acknowledgement of cache 

invalidation

} Modification only continues after all caches invalidated or 
Keep-Alive time out

Chubby. Zookeeper. Zab24



Client Sessions

} Sessions maintained between client and server
} Keep-alive messages required to maintain session every few 

seconds 
} A client sends keep-alive requests to a master
} A master responds by a keep-alive response

} If session is lost, server releases any client-held handles.
} What if master is late with next keep-alive?

} Client has its own (longer) timeout to detect server failure
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Master Failure

} If client does not hear back about Keep-Alive in local 
lease timeout, session is in jeopardy
} Clear local cache
} Wait for “grace period” (about 45 seconds)
} Continue attempt to contact master
} Successful attempt => ok; jeopardy over
} Failed attempt => session assumed lost

} If replicas lose contact with master
} They wait for grace period (4—6 secs)
} On timeout, hold new election
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Master Fail-over: Grace Period
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Reliability

} Started out using replicated Berkeley DB
} Now uses custom write-thru logging DB
} Entire database periodically sent to GFS 

} In a different data center

} Chubby replicas span multiple racks
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Scalability

} 90K+ clients communicate with a single Chubby master 
(2 CPUs)

} System increases lease times from 12 sec up to 60 secs 
under heavy load

} Clients cache virtually everything
} Data is small – all held in RAM (as well as disk)
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2: Zookeeper



ZooKeeper

} Provides to HDSF functionality similar to that provided by 
Chubby to GFS

} Design inspired from Chubby
} Zookeeper is used to manage master election and store 

other process metadata 
} Chubby and Zookeeper are both much more than a 

distributed lock service: implementations of highly 
available, distributed metadata file systems
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ZooKeeper

} Aims to provide a simple and high performance kernel for 
building more complex client

} Wait free
} FIFO
} No lock
} Pipeline architecture
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What is coordination?

} Group membership
} Leader election
} Dynamic configuration
} Status monitoring
} Queuing
} Critical sections
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Contributions

} Coordination kernel
} Wait-free coordination

} Coordination recipes
} Build higher primitives

} Experience with Coordination
} Some application use ZooKeeper
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Zookeeper Service

} Znode
} In-memory data node in the 

Zookeeper data
} Have a hierarchical namespace
} UNIX like notation for path

} Types of Znode
} Regular: Clients manipulate regular znodes by creating and deleting 

them explicitly;
} Ephemeral: Clients create such znodes, and they either delete them 

explicitly, or let the system remove them automatically
} Flags of Znode

} Sequential flag: Nodes created with the sequential flag set have the 
value of a monotonically increasing counter appended to its name. 
If n is the new znode and p is the parent znode, then the sequence 
value of n is never smaller than the value in the name of any other 
sequential znode ever created under p.
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Zookeeper Service

} Watch Mechanism
} Get notification
} One time triggers

} Other properties of Znode
} Znode is not designed for data storage, instead it stores meta-

data or configuration
} Can store information like timestamp version

} Session
} A connection to server from client is a session
} Timeout mechanism
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Client API

} Create(path, data, flags)
} Delete(path, version)
} Exist(path, watch)
} getData(path, watch)
} setData(path, data, version)
} getChildren(path, watch)
} Sync(path)
} Two versions 

} Synchronous: I when it needs to execute a single ZooKeeper
operation and it has no concurrent tasks to execute,

} Asynchronous: multiple outstanding ZooKeeper operations and 
other tasks executed in parallel. 
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Guarantees

} Linearizable writes
} All requests that update the state of ZooKeeper data are 

serializable and respect precedence 

} FIFO client order
} All requests are in order that they were sent by client
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Configuration Management

} Problem: dynamic configuration propose
} Solution:

} Simplest way is to make up a znode c for saving configuration 
} Other processes set the watch flag on c 
} The notification just indicates there is an update without telling 

how many time updates occurs
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Rendezvous

} Problem: Configuration of the system may not be sure at 
the beginning (For example, a client may want to start a 
master process and several worker processes, but the 
starting processes is done by a scheduler, so the client 
does not know ahead of time information such as 
addresses and ports that it can give the worker processes 
to connect to the master)

} Solution
} Create a znode r as a rendezvous point
} When master starts he fills the configuration in r
} Workers watch node r
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Group Membership

} Create a znode g
} Each process create a znode under g in ephemeral mode: 

e. If the process fails or ends, the znode that represents it 
under zg is automatically removed.

} Watch g for group information
} Processes can obtain group information by simply listing 

the children of zg
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Simple Lock

} Create a znode l for locking
} If one gets to create l he gets the lock
} Others who fail to create watch l, waiting for the lock to 

be released
} A client releases the lock when it dies or explicitly 

deletes the znode. 
} Problems: herd effect
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Simple Lock without herd effect

} We line up all the clients requesting the lock and each 
client obtains the lock in order of request arrival
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Read/Write Lock
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Double Barrier

} To synchronize the beginning and the end of computation
} Create a znode b, and every process needs to register on 

it, by adding a znode under b
} Set a threshold that starts the process
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Application

} Fetching Service
} Using ZooKeeper for recovering from failure of masters
} Configuration metadata and leader election
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Application

} Yahoo Message Broker
} A distributed publish-subscribe system
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Implementation

} Provides high availability by replicating the ZooKeeper
data on each server that composes the service
} an in-memory database containing the entire data tree

} Servers fail by crashing, and such faulty servers may later 
recover

} Clients submit request:
} Write requests require coordination among the servers; they 

use an agreement protocol (an implementation of atomic 
broadcast)

} Read requests do not require coordination; , a server reads the 
state of the local database and generates a response to the 
request
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3: Zab



Zab

} It provides an important service for Zookeeper
} Atomic broadcast for primary-backup schemes
} Addresses the scenario when the primary (i.e the leader) 

fails
} Semantics

} Primary order: similar but different from causal order

} Assumes that state changes are idempotent, i.e. applying 
the same state multiple times does not lead to 
inconsistencies
} At least once semantics is enough
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Zab vs Group Communication

} Zab does borrow some concepts from group 
communication

} Group communication also uses the notion of VIEW – to 
define membership
} View changes take place because of join/leave, process crashes 

and network partitions

} Zab uses VIEWs to identify leadership of primaries
} View changes take place when a primary crashed or lost 

support from a quorum
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Other features

} Support for prefix of transactions submitted concurrently 
by a client are applied in FIFO order 

} Fast recovery from primary crashes: allows the primary 
to identify the sequence of transactions to recover the 
application state 
} Does not need to reexecute orderings for pending 

transactions
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Process roles

} All process either Lead or Follow
} Followers

} Maintain a history of transactions 

} Leader
} Can change

} Transactions are identified by <e, c>
} e is the epoch number of the leader
} c: epoch counter
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Properties of the PO Broadcast

} Integrity
} Only broadcast transactions are delivered
} Leaders recovers before broadcasting new transactions

} Total order
} Agreement

} Followers deliver the same transaction and in the same order

} They are defined with respect to the leadership of a 
leader
} Similar with the way such properties were defined in the 

context of  Virtual Synchrony
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Primary Order

} Local order:
} Order in which transactions are accepted by the leader

} Global order:
} Defined by the order of epochs
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Zab

} Phase 0 – Leader election
} Prospective leader L elected 

} Phase 1 – Discovery
} Phase 2

} Followers promise not to go back to previous epochs

} Followers send to the leader L their last epoch and history
} L selects longest history of latest epoch

} Phase 3 – Synchronization
} Sends new history to followers
} Followers confirm leadership

} Phase 3 – Broadcast
} Proposes new transactions

} Commits if quorum acknowledges Chubby. Zookeeper. Zab56



Zab vs Paxos vs Viewstamped
Replication

} Paxos, VSR, and Zab are three well-known replication 
protocols for asynchronous environments that admit 
bounded numbers of crash failures. 

} Compute-intensive services are better off with a passive 
replication strategy, such as used in VSR and Zab
(provided that state updates are of a reasonable size). 

} To achieve predictable low-delay performance for short 
operations during both normal case execution and 
recovery, an active replication strategy without designated 
majorities, such as used in Paxos, is the best option. 
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