
Cristina Nita-Rotaru

7610: Distributed Systems

MapReduce. Hadoop. Spark. Mesos. Yarn

REQUIRED READING

} MapReduce: Simplified Data Processing on
Large Clusters OSDI 2004

} Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center, NSDI 2011

} Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster
Computing, NSDI 2012, best paper

} Apache Hadoop YARN: Yet Another Resource
Negotiator SOCC 2013 (best paper)

} Omega: flexible, scalable schedulers for large
compute clusters, EuroSys 2013 (best paper)

MapReduce. Spark. Mesos. Yarn2

Typical Google Cluster

Shared pool of machines that also run other distributed applications

MapReduce. Spark. Mesos. Yarn3

1: MapReduce

These are slides from Dan Weld�s class at U. Washington
(who in turn made his slides based on those by Jeff Dean,
Sanjay Ghemawat, Google, Inc.)

Motivation

} Large-Scale Data Processing
} Want to use 1000s of CPUs

} But don�t want hassle of managing things

} MapReduce provides
} Automatic parallelization & distribution
} Fault tolerance
} I/O scheduling
} Monitoring & status updates

MapReduce. Spark. Mesos. Yarn5

Map/Reduce

} Map/Reduce
} Programming model from Lisp
} (and other functional languages)

} Many problems can be phrased this way
} Easy to distribute across nodes
} Nice retry/failure semantics

MapReduce. Spark. Mesos. Yarn6

Map in Lisp (Scheme)

} (map f list [list2 list3 …])

} (map square �(1 2 3 4))
} (1 4 9 16)

} (reduce + �(1 4 9 16))
} (+ 16 (+ 9 (+ 4 1)))
} 30

} (reduce + (map square (map – l1 l2))))

MapReduce. Spark. Mesos. Yarn7

Unary operator

Binary operator

Map/Reduce ala Google

} map(key, val) is run on each item in set
} emits new-key / new-val pairs

} reduce(key, vals) is run for each unique key emitted by
map()
} emits final output

MapReduce. Spark. Mesos. Yarn8

count words in docs

} Input consists of (url, contents) pairs

} map(key = url, val = contents):
} For each word w in contents, emit (w, �1�)

} reduce(key = word, values = uniq_counts):
} Sum all �1�s in values list
} Emit result �(word, sum)�

MapReduce. Spark. Mesos. Yarn9

Count, Illustrated

} map(key=url, val=contents):
} For each word w in contents, emit (w, �1�)

} reduce(key=word, values=uniq_counts):
} Sum all �1�s in values list
} Emit result �(word, sum)�

MapReduce. Spark. Mesos. Yarn10

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

Grep

} Input consists of (url+offset, single line)
} map(key=url+offset, val=line):

} If contents matches regexp, emit (line, �1�)

} reduce(key=line, values=uniq_counts):
} Don�t do anything; just emit line

MapReduce. Spark. Mesos. Yarn11

Reverse Web-Link Graph

} Map
} For each URL linking to target, …
} Output <target, source> pairs

} Reduce
} Concatenate list of all source URLs
} Outputs: <target, list (source)> pairs

MapReduce. Spark. Mesos. Yarn12

Implementation

} Typical cluster:
} 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
} Limited bisection bandwidth
} Storage is on local IDE disks

} GFS: distributed file system manages data

} Job scheduling system: jobs made up of tasks, scheduler
assigns tasks to machines

} Implementation is a C++ library linked into user programs

MapReduce. Spark. Mesos. Yarn13

Execution

} How is this distributed?
} Partition input key/value pairs into chunks, run map() tasks in

parallel
} After all map()s are complete, consolidate all emitted values for

each unique emitted key
} Now partition space of output map keys, and run reduce() in

parallel

} If map() or reduce() fails, reexecute!

MapReduce. Spark. Mesos. Yarn14

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits �grep� job, indicating code and input
files

2. JobTracker breaks input file into k chunks, (in this
case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-output to
build reduce() keyspace

4. JobTracker breaks reduce() keyspace into m chunks
(in this case 6). Assigns work.

5. reduce() output may go to GFS

�grep�

Job Processing

MapReduce. Spark. Mesos. Yarn15

Execution

MapReduce. Spark. Mesos. Yarn16

Parallel Execution

MapReduce. Spark. Mesos. Yarn17

Task Granularity & Pipelining

} Fine granularity tasks: map tasks >> machines
} Minimizes time for fault recovery
} Can pipeline shuffling with map execution
} Better dynamic load balancing

} Often use 200,000 map & 5000 reduce tasks
} Running on 2000 machines

MapReduce. Spark. Mesos. Yarn18

Fault Tolerance / Workers

} Handled via re-execution
} Detect failure via periodic heartbeats
} Re-execute completed + in-progress map tasks
} Re-execute in progress reduce tasks
} Task completion committed through master

} Robust: lost 1600/1800 machines once à finished ok

MapReduce. Spark. Mesos. Yarn19

Master Failure

} Could handle, … ?
} But don't yet

} (master failure unlikely)

MapReduce. Spark. Mesos. Yarn20

Refinement: Redundant Execution

Slow workers significantly delay completion time
} Other jobs consuming resources on machine
} Bad disks w/ soft errors transfer data slowly
} Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup tasks
} Whichever one finishes first "wins"

Dramatically shortens job completion time

MapReduce. Spark. Mesos. Yarn21

Refinement: Locality Optimization

} Master scheduling policy:
} Asks GFS for locations of replicas of input file blocks
} Map tasks typically split into 64MB (GFS block size)
} Map tasks scheduled so GFS input block replica are on same

machine or same rack

} Effect
} Thousands of machines read input at local disk speed

} Without this, rack switches limit read rate

MapReduce. Spark. Mesos. Yarn22

Refinement: Skipping Bad Records

} Map/Reduce functions sometimes fail for particular inputs
} Best solution is to debug & fix

} Not always possible ~ third-party source libraries
} On segmentation fault:

} Send UDP packet to master from signal handler
} Include sequence number of record being processed

} If master sees two failures for same record:
} Next worker is told to skip the record

MapReduce. Spark. Mesos. Yarn23

Other Refinements

} Sorting guarantees
} within each reduce partition

} Compression of intermediate data
} Combiner

} Useful for saving network bandwidth

} Local execution for debugging/testing
} User-defined counters

MapReduce. Spark. Mesos. Yarn24

Performance

Tests run on cluster of 1800 machines:
} 4 GB of memory
} Dual-processor 2 GHz Xeons with Hyperthreading
} Dual 160 GB IDE disks
} Gigabit Ethernet per machine
} Bisection bandwidth approximately 100 Gbps

Two benchmarks:
MR_GrepScan 1010 100-byte records to extract records

matching a rare pattern (92K matching records)

MR_SortSort 1010 100-byte records (modeled after TeraSort

benchmark)
MapReduce. Spark. Mesos. Yarn25

MR_Grep

Locality optimization helps:
} 1800 machines read 1

TB at peak ~31 GB/s
} W/out this, rack

switches would limit to
10 GB/s

Startup overhead is
significant for short jobs

MapReduce. Spark. Mesos. Yarn26

Normal No backup tasks 200 processes killed

MR_Sort

§ Backup tasks reduce job completion time a lot!
§ System deals well with failures

MapReduce. Spark. Mesos. Yarn27

2: Hadoop

Apache Hadoop

} Apache Hadoop's MapReduce and HDFS
components originally derived from
} Google File System (GFS)1 – 2003
} Google's MapReduce2 - 2004

} Data is broken in splits that are
processed in different machines.

} Industry wide standard for processing Big
Data.

MapReduce. Spark. Mesos. Yarn29

Overview of Hadoop

} Basic components of Hadoop are:
} Map Reduce Layer

} Job tracker (master) -which coordinates the execution of jobs;
} Task trackers (slaves)- which control the execution of map and

reduce tasks in the machines that do the processing;

} HDFS Layer- which stores files.
} Name Node (master)- manages the file system, keeps metadata

for all the files and directories in the tree
} Data Nodes (slaves)- work horses of the file system. Store and

retrieve blocks when they are told to (by clients or name node) and
report back to name node periodically

MapReduce. Spark. Mesos. Yarn30

Overview of Hadoop contd.

Job Tracker - coordinates the
execution of jobs

Task Tracker – control the
execution of map and reduce
tasks in slave machines

Data Node – Follow the
instructions from name
node
- stores, retrieves data

Name Node – Manages the
file system, keeps metadata

MapReduce. Spark. Mesos. Yarn31

Hadoop Versions

• MapReduce 2 runtime and HDFS HA was
introduced in Hadoop 2.x

MapReduce. Spark. Mesos. Yarn32

Fault Tolerance in HDFS layer

} Hardware failure is the norm rather than the exception
} Detection of faults and quick, automatic recovery

from them is a core architectural goal of HDFS.
} Master Slave Architecture with NameNode (master) and

DataNode (slave)
} Common types of failures

} NameNode failures
} DataNode failures

MapReduce. Spark. Mesos. Yarn33

Handling Data Node Failure

} Each DataNode sends a Heartbeat message to the
NameNode periodically

} If the namenode does not receive a heartbeat from a
particular data node for 10 minutes, then it considers that
data node to be dead/out of service.

} Name Node initiates replication of blocks which were
hosted on that data node to be hosted on some other
data node.

MapReduce. Spark. Mesos. Yarn34

Handling Name Node Failure

} Single Name Node per cluster.
} Prior to Hadoop 2.0.0, the NameNode was a single point

of failure (SPOF) in an HDFS cluster.
} If NameNode becomes unavailable, the cluster as a whole

would be unavailable
} NameNode has to be restarted
} Brought up on a separate machine.

MapReduce. Spark. Mesos. Yarn35

HDFS High Availability

} Provides an option of
running two redundant
NameNodes in the
same cluster

} Active/Passive
configuration with a
hot standby.

} Fast failover to a new
NameNode in the case
that a machine crashes

} Graceful administrator-
initiated failover for the
purpose of planned
maintenance.

MapReduce. Spark. Mesos. Yarn36

Classic MapReduce (v1)

} Job Tracker
} Manage Cluster Resources and Job

Scheduling

} Task Tracker
} Per-node agent
} Manage Tasks

} Jobs can fail
} While running the task (Task Failure)
} Task Tracker failure
} Job Tracker failure

MapReduce. Spark. Mesos. Yarn37

Handling Task Failure

} User code bug in map/reduce
} Throws a RunTimeException
} Child JVM reports a failure back to the parent task tracker

before it exits.

} Sudden exit of the child JVM
} Bug that causes the JVM to exit for the conditions exposed by

map/reduce code.

} Task tracker marks the task attempt as failed, makes
room available to another task.

MapReduce. Spark. Mesos. Yarn38

Task Tracker Failure

} Task tracker will stop sending the heartbeat to the Job
Tracker

} Job Tracker notices this failure
} Hasn’t received a heart beat from 10 mins
} Can be configured via mapred.tasktracker.expiry.interval

property

} Job Tracker removes this task from the task pool
} Rerun the Job even if map task has ran completely

} Intermediate output resides in the failed task trackers local file
system which is not accessible by the reduce tasks.

MapReduce. Spark. Mesos. Yarn39

Job Tracker Failure

} This is serious than the other two modes of failure.
} Single point of failure.
} In this case all jobs will fail.

} After restarting Job Tracker all the jobs running at the
time of the failure needs to be resubmitted.

MapReduce. Spark. Mesos. Yarn40

3. Spark

Slides by Matei Zaharia, UC Berkeley

Motivation

} Map reduce based tasks are slow
} Sharing of data across jobs is stable storage
} Replication of data and disk I/O

} Support iterative algorithms
} Support interactive data mining tools – search

Existing literature on large distributed
algorithms on clusters

} General : Language-integrated “distributed dataset” API,
but cannot share datasets efficiently across queries
} Map Reduce

} Map
} Shuffle
} Reduce

} DyradLinq
} Ciel

} Specific : Specialized models; can’t run arbitrary / ad-hoc
queries
} Pregel – Google’s graph based
} Haloop – iterative Hadoop

} (Cont)
} Caching systems

} Nectar – Automatic expression caching, but over distributed
FS

} Ciel – not explicit control over cached data
} PacMan - Memory cache for HDFS, but writes still go to

network/disk

} Lineage
} To track dependency of task information across a DAG of

tasks

Resilient Distributed Datasets (RDDs)

} Restricted form of distributed shared memory
} Read only/ Immutable , partitioned collections of records
} Deterministic
} From coarse grained operations (map, filter, join, etc.)
} From stable storage or other RDDs
} User controlled persistence
} User controlled partitioning

Representing RDDs

No need of check pointing
Checkpoint
ing

Spark programming interface

} Lazy operations
} Transformations not done until action

} Operations on RDDs
} Transformations - build new RDDs
} Actions - compute and output results

} Partitioning – layout across nodes
} Persistence – storage in RAM / Disc

RDD on Spark

Example : Console Log mining

Example : Logistic regression

} Classification problem that searches for hyper plane w

Transforms text to point objects

Repetitive map and reduce
to compute gradient

Example : PageRank

} Start each page with rank 1/N.
} On each iteration update the page rank

} = Σ i∈neighbors ranki / |neighbors |

PageRank performance

RDDs versus DSMs

RDDs unsuitable for applications that make asynchronous
fine- grained updates to shared state,
-storage system for a web application
-an incremental web crawler

Lookup by key

Implementation in Spark

} Job scheduler
} Data locality captured using delay scheduling

} Interpreter integration
} Class shipping
} Modified code generation

} Memory management
} In memory and swap memory
} LRU

} Support for checkpointing
} Good for long lineage graphs

Evaluation

} Runs on Mesos to share clusters with Hadoop
} Can read from any Hadoop input source (HDFS or

HBase)
} RDD implemented in Spark

} Ability to be used over any other cluster systems as well

Iterative ML applications

scalability

No improvement in successive iterations
Slow due to heartbeat signals Initially slow due to conversion of text to binary in-Mem and java objects

Understanding Speedup

Reading from HDFS costs 2 seconds
10 second difference
Text to binary parsing = 7 sec
Conversion of binary record to Java
3sec

Failure in RDD

RDDs track the graph of transformations that built them (their
lineage) to rebuild lost data

In sufficient memory

User applications using Spark

} In memory analytics at Conviva : 40x speedup
} Traffic modeling (Traffic prediction via EM - Mobile

Millennium)
} Twitter spam classification(Monarch)

} DNA sequence analysis (SNAP)

RDDs

} Good
} RDDs offer a simple and efficient programming model
} Open source and scalable implementation at Spark
} Improves the speed to the memory bandwidth limit – good for

batch processes

} Improvements
} Memory leak if too many RDDs loaded - garbage collection to

be built in
} Uses LRU – better memory replacement algorithms possible

} Handling data locality using partition/hash and delay scheduling
} Hybrid system for handling fine grained updates
} Use for debugging

MapReduce. Spark. Mesos. Yarn62

} Fast, expressive cluster computing system compatible with
Apache Hadoop
} Works with any Hadoop-supported storage system (HDFS, S3, Avro,

…)
} Improves efficiency through:

} In-memory computing primitives
} General computation graphs

} Improves usability through:
} Rich APIs in Java, Scala, Python
} Interactive shell

Up to 100� faster

Often 2-10� less code

What is Spark?

MapReduce. Spark. Mesos. Yarn63

Key Idea

} Work with distributed collections as you would
with local ones

} Concept: resilient distributed datasets (RDDs)
} Immutable collections of objects spread across a cluster
} Built through parallel transformations (map, filter, etc)
} Automatically rebuilt on failure
} Controllable persistence (e.g. caching in RAM)

MapReduce. Spark. Mesos. Yarn64

Operations

} Transformations (e.g. map, filter, groupBy, join)
} Lazy operations to build RDDs from other RDDs

} Actions (e.g. count, collect, save)
} Return a result or write it to storage

MapReduce. Spark. Mesos. Yarn65

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(‘\t’)[2])

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “foo” in s).count()

messages.filter(lambda s: “bar” in s).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD
Transformed RDD

Action

Result: full-text search of Wikipedia in <1 sec
(vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Example: Mining Console Logs

} Load error messages from a log into memory, then
interactively search for patterns

MapReduce. Spark. Mesos. Yarn66

RDD Fault Tolerance

RDDs track the transformations used to build them (their
lineage) to recompute lost data

E.g:
messages = textFile(...).filter(lambda s: s.contains(“ERROR”))

.map(lambda s: s.split(‘\t’)[2])

HadoopRDD
path = hdfs://…

FilteredRDD
func = contains(...)

MappedRDD
func = split(…)

MapReduce. Spark. Mesos. Yarn67

Spark in Java and Scala
Java API:

JavaRDD<String> lines = spark.textFile(…);

errors = lines.filter(
new Function<String, Boolean>() {
public Boolean call(String s) {
return s.contains(“ERROR”);

}
});

errors.count()

Scala API:

val lines = spark.textFile(…)

errors = lines.filter(s =>
s.contains(“ERROR”))
// can also write filter(_.contains(“ERROR”))

errors.count

MapReduce. Spark. Mesos. Yarn68

Which Language Should I Use?

} Standalone programs can be written in any, but console is
only Python & Scala

} Python developers: can stay with Python for both
} Java developers: consider using Scala for console (to

learn the API)

} Performance: Java / Scala will be faster (statically typed),
but Python can do well for numerical work with NumPy

MapReduce. Spark. Mesos. Yarn69

Scala Cheat Sheet

Variables:
var x: Int = 7
var x = 7 // type inferred

val y = “hi” // read-only

Functions:

def square(x: Int): Int = x*x

def square(x: Int): Int = {
x*x // last line returned

}

Collections and closures:

val nums = Array(1, 2, 3)

nums.map((x: Int) => x + 2) // => Array(3, 4, 5)

nums.map(x => x + 2) // => same
nums.map(_ + 2) // => same

nums.reduce((x, y) => x + y) // => 6
nums.reduce(_ + _) // => 6

Java interop:

import java.net.URL

new URL(“http://cnn.com”).openStream()

More details:
scala-lang.org

MapReduce. Spark. Mesos. Yarn70

http://www.scala-lang.org

Outline

} Introduction to Spark
} Tour of Spark operations
} Job execution
} Standalone programs
} Deployment options

MapReduce. Spark. Mesos. Yarn71

Learning Spark

} Easiest way: Spark interpreter (spark-shell or
pyspark)
} Special Scala and Python consoles for cluster use

} Runs in local mode on 1 thread by default, but can
control with MASTER environment var:

MASTER=local ./spark-shell # local, 1 thread
MASTER=local[2] ./spark-shell # local, 2 threads
MASTER=spark://host:port ./spark-shell # Spark standalone cluster

MapReduce. Spark. Mesos. Yarn72

} Main entry point to Spark functionality
} Created for you in Spark shells as variable sc
} In standalone programs, you’d make your own (see later

for details)

First Stop: SparkContext

MapReduce. Spark. Mesos. Yarn73

Creating RDDs

Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt,
conf)

MapReduce. Spark. Mesos. Yarn74

Basic Transformations

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # => {1,
4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) #
=> {4}

Map each element to zero or more others
nums.flatMap(lambda x: range(0, x)) # => {0,
0, 1, 0, 1, 2}

Range object (sequence of
numbers 0, 1, …, x-1)

MapReduce. Spark. Mesos. Yarn75

nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile(“hdfs://file.txt”)

Basic Actions

MapReduce. Spark. Mesos. Yarn76

} Spark’s “distributed reduce” transformations act on RDDs
of key-value pairs

} Python: pair = (a, b)
pair[0] # => a
pair[1] # => b

} Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

} Java: Tuple2 pair = new Tuple2(a, b); // class scala.Tuple2
pair._1 // => a
pair._2 // => b

Working with Key-Value Pairs

MapReduce. Spark. Mesos. Yarn77

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

pets.groupByKey()
=> {(cat, Seq(1, 2)), (dog, Seq(1)}

pets.sortByKey()
=> {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on
the map side

MapReduce. Spark. Mesos. Yarn78

lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ ”)) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda x, y: x + y)

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

Example: Word Count

MapReduce. Spark. Mesos. Yarn79

visits = sc.parallelize([(“index.html”, “1.2.3.4”),
(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”)])

pageNames = sc.parallelize([(“index.html”, “Home”), (“about.html”, “About”)])

visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
(“index.html”, (Seq(“1.2.3.4”, “1.3.3.1”), Seq(“Home”)))
(“about.html”, (Seq(“3.4.5.6”), Seq(“About”)))

Multiple Datasets

MapReduce. Spark. Mesos. Yarn80

Controlling the Level of Parallelism

} All the pair RDD operations take an optional second
parameter for number of tasks

words.reduceByKey(lambda x, y: x + y, 5)
words.groupByKey(5)
visits.join(pageViews, 5)

MapReduce. Spark. Mesos. Yarn81

} External variables you use in a closure will automatically be
shipped to the cluster:

query = raw_input(“Enter a query:”)
pages.filter(lambda x: x.startswith(query)).count()

} Some caveats:
} Each task gets a new copy (updates aren’t sent back)
} Variable must be Serializable (Java/Scala) or Pickle-able (Python)
} Don’t use fields of an outer object (ships all of it!)

Using Local Variables

MapReduce. Spark. Mesos. Yarn82

class MyCoolRddApp {
val param = 3.14
val log = new Log(...)
...

def work(rdd: RDD[Int]) {
rdd.map(x => x + param)

.reduce(...)
}

}

How to get around it:

class MyCoolRddApp {
...

def work(rdd: RDD[Int]) {
val param_ = param
rdd.map(x => x + param_)

.reduce(...)
}

}
NotSerializableException:
MyCoolRddApp (or Log) References only local variable

instead of this.param

Closure Mishap Example

MapReduce. Spark. Mesos. Yarn83

More Details
}

Spark supports lots of other
operations!

}
Full program

m
ing guide: spark-

project.org/docum
entation

MapReduce. Spark. Mesos. Yarn84

http://www.spark-project.org/documentation

Outline

} Introduction to Spark
} Tour of Spark operations
} Job execution
} Standalone programs
} Deployment options

MapReduce. Spark. Mesos. Yarn85

Software Components

} Spark runs as a library in your
program
(one instance per app)

} Runs tasks locally or on a cluster
} Standalone deploy cluster, Mesos or

YARN

} Accesses storage via Hadoop
InputFormat API
} Can use HBase, HDFS, S3, …

Your application

SparkContext

Local
threads

Cluster
manager

Worker Worker

HDFS or other storage

Spark
executor

Spark
executor

MapReduce. Spark. Mesos. Yarn86

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition= RDD

map

Task Scheduler

} Supports general task
graphs

} Pipelines functions
where possible

} Cache-aware data reuse
& locality

} Partitioning-aware to
avoid shuffles

MapReduce. Spark. Mesos. Yarn87

Hadoop Compatibility

} Spark can read/write to any storage system / format that
has a plugin for Hadoop!
} Examples: HDFS, S3, HBase, Cassandra, Avro, SequenceFile
} Reuses Hadoop’s InputFormat and OutputFormat APIs

} APIs like SparkContext.textFile support filesystems, while
SparkContext.hadoopRDD allows passing any Hadoop JobConf to
configure an input source

MapReduce. Spark. Mesos. Yarn88

3: Mesos

Slides by Matei Zaharia

Problem

} Rapid innovation in cluster computing frameworks
} No single framework optimal for all applications
} Want to run multiple frameworks in a single cluster

} …to maximize utilization
} …to share data between frameworks

MapReduce. Spark. Mesos. Yarn90

Where We Want to Go

MapReduce. Spark. Mesos. Yarn91

Hadoop

Pregel

MPI
Shared cluster

Today: static partitioning Mesos: dynamic sharing

Solution

} Mesos is a common resource sharing layer over which
diverse frameworks can run

MapReduce. Spark. Mesos. Yarn92

Mesos

Node Node Node Node

Hadoop Pregel
…

Node Node

Hadoop

Node Node

Pregel
…

Other Benefits of Mesos

} Run multiple instances of the same framework
} Isolate production and experimental jobs
} Run multiple versions of the framework concurrently

} Build specialized frameworks targeting particular problem
domains
} Better performance than general-purpose abstractions

MapReduce. Spark. Mesos. Yarn93

Mesos Goals

} High utilization of resources
} Support diverse frameworks (current & future)
} Scalability to 10,000’s of nodes
} Reliability in face of failures

MapReduce. Spark. Mesos. Yarn94

Resulting design: Small microkernel-like core
that pushes scheduling logic to frameworks

Design Elements

} Fine-grained sharing:
} Allocation at the level of tasks within a job
} Improves utilization, latency, and data locality

} Resource offers:
} Simple, scalable application-controlled scheduling mechanism

MapReduce. Spark. Mesos. Yarn95

Element 1: Fine-Grained Sharing

MapReduce. Spark. Mesos. Yarn96

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

+ Improved utilization, responsiveness, data locality

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1Fw. 3

Fw. 3 Fw. 2Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2Fw. 3

Fw. 1

Fw. 1 Fw. 2Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

Element 2: Resource Offers

} Option: Global scheduler
} Frameworks express needs in a specification language, global

scheduler matches them to resources
} + Can make optimal decisions

} – Complex: language must support all framework needs
} – Difficult to scale and to make robust
} – Future frameworks may have unanticipated needs

MapReduce. Spark. Mesos. Yarn97

Element 2: Resource Offers

} Mesos: Resource offers
} Offer available resources to frameworks, let them pick which

resources to use and which tasks to launch

} Keeps Mesos simple, lets it support future frameworks
} Decentralized decisions might not be optimal

MapReduce. Spark. Mesos. Yarn98

Mesos Architecture

MapReduce. Spark. Mesos. Yarn99

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Resource
offer

Pick framework to
offer resources to

Mesos Architecture

MapReduce. Spark. Mesos. Yarn100

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources toResource

offer

Resource offer =
list of (node, availableResources)

E.g. { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>)

}

Mesos Architecture

MapReduce. Spark. Mesos. Yarn101

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor
Hadoop
executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources to

task
Framework-specific

scheduling

Resource
offer

Launches and
isolates executors

Optimization: Filters

} Let frameworks short-circuit rejection by providing a
predicate on resources to be offered
} E.g. “nodes from list L” or “nodes with > 8 GB RAM”
} Could generalize to other hints as well

} Ability to reject still ensures correctness when needs
cannot be expressed using filters

MapReduce. Spark. Mesos. Yarn102

Implementation Stats

} 20,000 lines of C++
} Master failover using ZooKeeper
} Frameworks ported: Hadoop, MPI, Torque
} New specialized framework: Spark, for iterative jobs

(up to 20� faster than Hadoop)

} Open source in Apache Incubator

MapReduce. Spark. Mesos. Yarn103

Users

} Twitter uses Mesos on > 100 nodes to run ~12
production services (mostly stream processing)

} Berkeley machine learning researchers are running several
algorithms at scale on Spark

} Conviva is using Spark for data analytics
} UCSF medical researchers are using Mesos to run

Hadoop and eventually non-Hadoop apps

MapReduce. Spark. Mesos. Yarn104

Framework Isolation

} Mesos uses OS isolation mechanisms, such as Linux
containers and Solaris projects

} Containers currently support CPU, memory, IO and
network bandwidth isolation

} Not perfect, but much better than no isolation

MapReduce. Spark. Mesos. Yarn105

Analysis

} Resource offers work well when:
} Frameworks can scale up and down elastically
} Task durations are homogeneous
} Frameworks have many preferred nodes

} These conditions hold in current data analytics
frameworks (MapReduce, Dryad, …)
} Work divided into short tasks to facilitate load balancing and

fault recovery
} Data replicated across multiple nodes

MapReduce. Spark. Mesos. Yarn106

Revocation

} Mesos allocation modules can revoke (kill) tasks to meet
organizational SLOs

} Framework given a grace period to clean up
} “Guaranteed share” API lets frameworks avoid revocation

by staying below a certain share

MapReduce. Spark. Mesos. Yarn107

Mesos API

MapReduce. Spark. Mesos. Yarn108

Scheduler Callbacks
resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks
launchTask(taskDescriptor)
killTask(taskId)

Executor Actions
sendStatus(taskId, status)

Scheduler Actions
replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Results

MapReduce. Spark. Mesos. Yarn109

» Utilization and performance vs static partitioning

» Framework placement goals: data locality

» Scalability

» Fault recovery

Dynamic Resource Sharing

MapReduce. Spark. Mesos. Yarn110

Mesos vs Static Partitioning

} Compared performance with statically partitioned cluster
where each framework gets 25% of nodes

MapReduce. Spark. Mesos. Yarn111

Framework Speedup on
Mesos

Facebook Hadoop Mix 1.14×
Large Hadoop Mix 2.10×
Spark 1.26×
Torque / MPI 0.96×

Data Locality with Resource Offers

} Ran 16 instances of Hadoop on a shared HDFS cluster
} Used delay scheduling [EuroSys ’10] in Hadoop to get

locality (wait a short time to acquire data-local nodes)

MapReduce. Spark. Mesos. Yarn112

1.7�

Scalability

} Mesos only performs inter-framework scheduling (e.g. fair
sharing), which is easier than intra-framework scheduling

MapReduce. Spark. Mesos. Yarn113

0

0.2

0.4

0.6

0.8

1

-10000 10000 30000 50000

Ta
sk

 S
ta

rt
 O

ve
rh

ea
d

(s
)

Number of Slaves

Result:
Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks (30s len)

Fault Tolerance

} Mesos master has only soft state: list of currently running
frameworks and tasks

} Rebuild when frameworks and slaves re-register with new
master after a failure

} Result: fault detection and recovery in ~10 sec

MapReduce. Spark. Mesos. Yarn114

Conclusion

} Mesos shares clusters efficiently among diverse
frameworks thanks to two design elements:
} Fine-grained sharing at the level of tasks
} Resource offers, a scalable mechanism for application-

controlled scheduling

} Enables co-existence of current frameworks and
development of new specialized ones

} In use at Twitter, UC Berkeley, Conviva and UCSF

MapReduce. Spark. Mesos. Yarn115

4: Yarn

YARN - Yet Another Resource Negotiator

} Next version of MapReduce or MapReduce 2.0 (MRv2)
} In 2010 group at Yahoo! Began to design the next

generation of MR

MapReduce. Spark. Mesos. Yarn117

YARN architecture

MapReduce. Spark. Mesos. Yarn118

• Resource Manager
• Central Agent –

Manages and allocates
cluster resources

• Node Manager
• Per-node agent –

Manages and enforces
node resource
allocations

• Application Master
• Per Application
• Manages application

life cycle and task
scheduling

YARN – Resource Manager Failure

} After a crash a new Resource Manager instance needs to
brought up (by an administrator)

} It recovers from saved state
} State consists of

} node managers in the systems
} running applications

} State to manage is much more manageable than that of
Job Tracker.
} Tasks are not part of Resource Managers state.
} They are handled by the application master.

MapReduce. Spark. Mesos. Yarn119

