Cristina Nita-Rotaru

7610 : Distributed Systems

Al

Slides based on material by Prof. Ken Birman,
for CS5412, and authors of TensorFlow and
authors of GraphLab

» Lessons from the talk
Simple problems are not so simple at scale
Byzantine in a data center
Membership under churn for loaded machines

» Github incident

» List of systems

Al

Required reading for this topic...

» Distributed GraphlLab: A Framework for
Machine Learning and Data Mining in the

Cloud,VLDB 2012

» Pregel: A System for Large-Scale Graph
Processing, SIGMOD 2010

» TensorFlow:A System for Large-Scale
Machine Learning OSDI 2016

Clouds and machine learning tools

» Early cloud just served web pages and embedded ads

» However, individualized advertising gives far better
results... (and they increase revenue)

» Better selection of ads gave rise to an Al revolution
Individual actions
Social networking “graphs”

» Today, the whole cloud is a massive scalable system for
machine learning and associated actions.

Al

Where does the Al live?

Third tier:

Stateful Back-end: Big-
Mobile First tier- Second services like datj analry]/jucs
cli - tier: databases, an chine
Builds Cach | th le g tools
weh aches plus other
- - - 100ms seconds >
....minutes/hours HL-Services

I
° http://www.cs.cornell.edu/courses/cs5412/201 éép

How to support ML algorithms at scale

» Old approach:
threads, locks, messages
» Newer approach:
MapReduce, Spark

» When is MapReduce the right approach?
» When MapReduce does not work well?

» Design new abstractions and systems to support ML
development and running at scale

Graphlab, created at CMU, eventually bought by Apple
TensorFlow, created by GoogleBrain

Al

1:Why Map-Reduce is not the best approach
for ML applications

MapReduce — Map Phase

ﬁ@l'&: s

Embarrassingly Parallel independent computation

No Communication needed
8

Al

MapReduce — Map Phase

l\)l—*l

n
N

on\)l

Image Features

Al

MapReduce — Map Phase

I&:

1 5 i 3
. 7 4 4
5 5 9 3

2] 1)

2 4 8 2
2 4

~]

2] 8
5

9 1 3 3 3 4 8 4

Embarrassingly Parallel independent computation

No Communication needed
10 Al

MapReduce — Reduce Phase

Class B Face
Statistics

Class A Face
Statistics

~|

<]

n

8 6|
7

3 5

1]
8

4

.n—\l

o v

NS

11

Image Features

Al

Map-Reduce for Data-Parallel ML

» Excellent for large data-parallel tasks!

Data-Parallel 15 there more to
Machine Learning

Map Reduce
Feature Cross ?
Extraction Validation n

Computing Sufficient
Statistics

12

Label propagation algorithm

- 80%
Cameras
20% Biking

50%
Cameras
50% Biking

30%
Cameras
70% Biking

13 Al

Properties of Graph Parallel Algorithms

Dependency Factored Iterative
Graph Computation Computation
What I Like
What My
Friends Like

14 Al

Map-Reduce for Data-Parallel ML

» Excellent for large data-parallel tasks!

Data-Parallel

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics

15

Label Propagation

Lasso
Belief
Kernel Propagation
Methods Pag
Tensor PageRank

Factorization

Deep Belief ~ Neural

Networks ~ Networks
Al

Limitations of MR: Data Dependencies

» Map-Reduce does not efficiently express dependent data
User must code substantial data transformations
Costly data replication

Independent Data Rows

e . 1 I
2 1 4 e

4 . 3 -

1 V 4|‘ /) < & X
| T ! i R 30 ’ €
T T .

£ L o
L ‘ { L | (&)
« .4 < ' _', .) ALY .) N

: n i ' 2
o 5=

16 Al

Limitations of MR: Iterative Algorithms

» Map-Reduce does not efficiently express iterative algorithms:

lterations

CPU 1

Slow
Processor

CPU 1

CPU 1

CPU 3

(Data)
(Data)
(Data)
(Data)
(Data)

17

Barrier

VOO0 0 C

CPU 3

Barrier

§) € OIEE © ¢

FHODD O

Barrier

Al

[terative MapReduce

» Only a subset of data needs computation:

18

lterations

CPU 1 CPU 1

CPU 3 CPU 3

066060 6 ¢
DEEEE6EE

Barrier »
Barrier

BOOOOOE

HOOEOEOEE "

Barrier

Al

» System is not optimized for iteration:

[terative MapReduce

>@ooooo@

Disk Penalty

Startup Penalty

CRCNCNCRCRORE

Disk Penalty

, 8. 00
YR6R000

Disk Penalty

g 8 0

mﬁmnc_%m:m_a\
URCRCUNCRCNCRE

Al

Map-Reduce for Data-Parallel ML

» Excellent for large data-parallel tasks!

Data-Parallel

Map Reduce

Feature Cross L asso SVM
Extraction Validation Belief
Kernel Propagation
Methods Pag
Computlng Sufﬂment Tensor PageRank
Statistics Factorization

Deep Belief ~ Neural
20 Al

Pregel (Giraph)

» Bulk Synchronous Parallel Model (Valiant 1990):

Compute Communicate

Loopy Belief Propagation (Loopy BP)

» Iteratively estimate the “beliefs” about vertices
Read in messages

Updates marginal
estimate (belief)

Send updated
out messages

» Repeat for all variables
until convergence

23 Al

Bulk Synchronous Loopy BP

» Often considered embarrassingly parallel

Associate processor
with each vertex

Receive all messages
Update all beliefs
Send all messages

» Proposed by:

Brunton et al. CRV’06
Mendiburu et al. GECC’07
Kang,et al. LDMTA’10

24

Al

Sequential Computational Structure

> 25 Al

Hidden Sequential Structure

> 26 Al

Hidden Sequential Structure

Evidence

27T

Evidence

-——
\
% N

] -—
,/ N\ N ,/ N

4 Al

Optimal Sequential Algorithm

Running
Time
Bulk Synchronous

2l 2l ol . 2n?/p
p<2n

The Splash Operation

» Generalize the optimal chain algorithm:

lllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

to arbitrary cyclic graphs:

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

29

Data-Parallel algorithms can be inefficient

Residual Splash for Optimally Parallelizing Belief Propagation

Joseph E. Gonzalez Yucheng Low Carlos Guestrin
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

9000
(7]
'g gggg \ ~_~ Optimized in Memory Bulk Synchronous
§ 6000 \\
2 5000
"= 4000
£ 3000 .
£ 2000 T~
2 1000 :

O [[[[[[|

Number of CPUs

The limitations of the Map-Reduce abstraction can

lead to inefficient parallel algorithms.
30 Al

Need a new abstraction

» Map-Reduce is not well suited for Graph-Parallelism

Data-Parallel
Map Reduce (/...
Carnegie Mellon
Feature Cross
Extraction Validation Belief
Kernel .
SVM Methods Propagation
Computing Sufficient
PUting < Tensor PageRank
Statistics Factorization

Lasso
Deep Belief ~ Neural

Networks
. Networks N

2:GraphLab

The GraphLab Framework

33

Data Graph

A graph with arbitrary data (C++ Objects)
associated with each vertex and edge.

. - Graph:' i

» Social Network

Vertex Data:-

- ' - *User profile text

e Current interests estimates

Edge Data:

- - . « Similarity weights

34 Al

Implementing the Data Graph

Multicore Setting
» In Memory

» Relatively Straight Forward
vertex data(vid) = data
edge data(vid,vid) = data
neighbors(vid) = vid_list

» Challenge:

Fast lookup, low overhead

» Solution:

Dense data-structures
Fixed Vdata&Edata types

Immutable graph structure
35

Cluster Setting

» In Memory
» Partition Graph:
ParMETIS or Random

Cutsi ;i
C——D

» Cached Ghosting
4 N 4
Node 1 Node 2

The GraphLab Framework

36

Update Functions

An update function is a user defined program which when applied
to a vertex transforms the data in the scopeof the vertex

»/

- label prop(i, scope){
| // Get Neighborhood data
(Likes[1], W;;, Likes[j]) < scope

1\

// Update the vertex data

\s

Likes[i] < W, x Likes| j1;
O @ @ 2

JjEFriends[i]
// Reschedule Neighbors if needed
if Likes[1] changes then
reschedule neighbors of(i);

¥

37 Al

The GraphLab Framework

38

The Scheduler

The scheduler determines the order that vertices are
updated.

—
A
-
O
Q
-
O
0p)

The process repeats until the scheduler is empty.

39

Al

Implementing the Schedulers

» Multicore Setting

» Challenging!
Fine-grained locking
Atomic operations

» Approximate FiFo/Priority

Random placement

Work stealing

41

» Cluster Setting

» Multicore scheduler on
each node

Schedules only “local”
vertices

Exchange update functions

Node 1 Node 2
f(v4)

CPU1 CPU2 CPU1 CPU 2

The GraphLab Framework

42

Ensuring Race-Free Code

» How much can computation overlap!

Importance of consistency

Many algorithms require strict consistency, or perform
significantly better under strict consistency.

44

—r ok

Error (RMSE)
N » O ® 9O DN

Alternating Least Squares

1
5
1
1

5;/Inconsistent Updates

\‘,
~)

‘e ?®’'N Py
8 g N ’
s S e ’\\’ ~"\./§\‘\~/ .,

o Consistent Updates

» ~ 'S,

OO

10 20
lterations

30

Al

Importance of consistency

Machine learning algorithms require “model debugging”

Tweak Model

45 Al

GraphLab Ensures Sequential Consistency

For each parallel execution, there exists a sequential
execution of update functions which produces the same

result.
O O
CPU 1
Parallel
CPU 2
Sequential >ihdle

45 CPU A

Consistency Rules

Guaranteed sequential consistency for all update functions

b 48 Al

Full Consistency

49 Al

50
Obtaining More Parallelism

Full Consistency
<dge COnSiStenCy

Edge Consistency

Safe

» 51 Al

Consistency Through R/W Locks

» Read/Write locks:

» Full Consistency

(all o\
E 8

Write - Write - Write
Canonical Lock Ordering

» Edge Consistency

0

Read - Write

2 52 Al

Consistency Through R/W Locks

» MiulricAra Qatrineg: Prhraad RA\A/ | AFl/e

Consistency through scheduling

» Edge Consistency Model:

Two vertices can be Updated simultaneously if they do not
share an edge.

» Graph Coloring:

Two vertices can be assigned the same color if they do not
share an edge.

Phase 1} Phase 22 Phase 3

Barrier---

eeeee

Barrier---

eeeeee

——----Barrier--_

Vv
Vv

N

The GraphLab Framework

Graph Based Update Functions
Data Representation User

®0 808
= -
€ 8§ ©
8080

8 0809

Scheduler Consistency

uuuu> a GG =)

95 Al

Algorithms Implemented

» PageRank

» Loopy Belief Propagation

» Gibbs Sampling

» CoEM

» Graphical Model Parameter Learning

» Probabilistic Matrix/Tensor Factorization

» Alternating Least Squares

» Lasso with Sparse Features

» SupportVector Machines with Sparse Features

» Label-Propagation

56

Al

Fault-tolerance: Checkpointing

|985: Chandy-Lamport invented an asynchronous
snapshotting algorithm for distributed systems.

o7

58

Checkpointing
Fine Grained Chandy-Lamport.

O @ @, O

O O O O

Easily implemented within GraphLab as an Update
Function!

59

Async. Snapshot Performance
No penalty incurred by the slow mach#ne!

x1O8

2.5
‘No Snapshot‘
2,
5 \ Snapsh
T g ot
'§_ 5
N
.8 1l \ One
T slow
> =
0.5 machine
¢ 50 100 150

time elapsed(s)

Loopy Beliet Propagation

3D retinal image denoising

Vertices: 1 Million
Edges: 3 Million

Data Graph _
Update Function:

. Loopy BP Update Equation

W\ Scheduler:

Approximate Priority

Consistency Model:
Edge Consistency

- -

v
2 2 4
P
—@—0

\

-
oo
X

\

60

Loopy Belief Propagation

Better
\

Speedup

Number of CPUs

61

Al

CoEM (Rosie Jones, 2005)

Named Entity Recognition Task

Is “Dog” an animal?

the dog

Is “Catalina” a place?

Australia

Vertices: 2 Million
Edges: 200 Million catatina I1sland

<X> ran quickly

travelled to <X>

<X> is pleasant

Hadoop

95 Cores

1.5 hrs

62

Al

Co.

M (Rosie Jones, 20095)

Hadoop

95 Cores

7.5 hrs

GraphlLab

16 Cores

63

30 min

‘ 6x fewer CPUs! 15x Faster! \

Al
03

64

4

Gaussian EM clustering + BP on 3D grid

Model: 10.5 million nodes, 31 million edges

Al

Video Coseg.

Speedups

16

|deal

CoSeg

'\
—\
—"\
'\
—\
—\
\
'\
\
““““
‘\
—"\
\“

\
*
*
.

65

16 24 32 40 48 56 64
#Nodes

Prefetching Data & Locks

Runtime(s)
0 200 400 600
Baseline P
B

maxpending(100)

| B Optimal Partitioned
maxpending(1000)

L[] Worst Case Partition

66

Matrix Factorization

» Netflix Collaborative Filtering
Alternating Least Squares Matrix Factorization
Model: 0.5 million nodes, 99 million edges

Users

:

Netflix

aull:

67 Al

Netflix

Spe1eglup Increasmg size of the matrix factorlzatlon

68

N

|dea|\

d=100 (159.91 IPB)
d=50 (85.68 IPB)

d=20 (48.72 |PB)
—
n
—
- ¥
-
'—
-
-
*®-"
-
-
- "
"
—’
¢’—
-
|||*
' llllllll * lllllllllllllllllllllll
L AR R\ U
z 7 e
\\\\\\\\
X
\\\\\
*\\\‘ * ------- *I ---------------- * -----------------
\\\\\\\\\
\\‘\ ‘*\-
\
\\\\\\
- *

\ -

18 16 24 32 40 48 56 64

#Nodes

Cost($)

The Cost of Hadoop

10

10

10

10

rrrrrr

10

69

Runtime(s)

10

]
|- 1
Iy,
o 1
-

092 094 0.6
Error (RMSE)

0.08

Al

Summary

» An abstraction tailored to Machine Learning
Targets Graph-Parallel Algorithms

» Naturally expresses

Data/computational dependencies
Dynamic iterative computation

» Simplifies parallel algorithm design
» Automatically ensures data consistency

» Achieves state-of-the-art parallel performance
on a variety of problems

70

Al

3:TensorFlow

Context

» Huge need for high-productivity tools for building
solutions to machine-learning problems

» Current infrastructures force people to reinvent the
wheel

» Spark/RDD model illustrates power that better tools
bring, but remains very low level:an RDD can deal with
“anything” and is really just a small code applet

» TensorFlow builds off idea that ML applications are best
understood by thinking about structured data: tensors

72 Al

Python+Dataflow Programming

73

Al

DataFlow Programming Example

Constant 3

Constant 4

tf.constant(>.09, =tf.float32)
tf.constant (4.0, =tf.float32)

tf.add(nodel,node2)

74 Al

Core TensorFlow Constructs

» Dataflow Graphs: entire computation

» Data Nodes: individual data or operations

» Edges: implicit dependencies between nodes
» Operations: any computation

» Constants: single values (tensors)

75

Al

Core TensorFlow constructs

» All nodes return tensors, or higher-dimensional matrices

» How a node computes is indistinguishable to
TensorFlow

» You are metaprogramming. No computation occurs
yet!

76 Al

Running code

().run(node3) #returns 7

77 Al

Placeholders (inputs) and how to use
them

nodel = tf.placeholder(tf.float32)
node2 = tf.placeholder(tf.float32)
node3 = tf.add(nodel,node2)

tf.Session().run(node3, {nodel :

78 Al

Variables (mutable state)

tf.Varia
tf.Varia
tf.place
linear model

Overloading!

ple([. 2], =tf.float32)
ple([-.2], =tf.float32)

nolder(tf.float32)
=W * X + b #Operator

init = tf.global variables initializer()

with tf.

() as sess:

sess.run(init)

Specitying devices using with blocks

with tf.device(
W = tf.
V = tf.
with tf.device()

output = tf.some fancy math(input, W) + b

Specitying devices using with blocks

with tf.device(
W = tf.
V = tf.
with tf.device()

output = tf.some fancy math(input, W) + b

i

B L 0ePUO task: 1/GPU:0 i

Starting remote TensorFlow nodes

#all the machines mentioned 1n the dataflow
graph

cluster =

tf.train. ([ipl:pl,ip2:p2,...])
#task _1index 1s set to my "id"

server = tf.train. (cluster,

#begin Listening

server.join()

Server actions

Sessions run code on subgraphs; can parallelize by
splitting input

with tf.device(
half _input = tf. (input[:len(input)/2])
work = tf.CoolFeature(half input)

cluster = tf.train. (...)

server = tf.train. (cluster,

with tf. (server.target) as sess:

sess.run(work)

83 Al

Suggested Design: parameter server

server nodes:

worker nodes:

84

Al

Parameter server focus :

» Hold Mutable state
» Apply updates

» Maintain availability
» Group Name: ps

85

Al

Worker focus:

» Perform “active” actions

» Checkpoint state to FS

» Mostly stateless; can be restarted
» Group name: worker

86

Al

Parameter server example

with tf.device(
W = tf. (...)
b = tf. (...)
inputs = tf.split(9,num workers,input)
outputs = []
for i in range (num_workers):
with tf.device(%d % 1):
outputs.append(tf.matmul(input[i],W) + b)

And that’s it!

» For most TF applications, you don’t need to know more.

» But this is because most TF runs are just a few steps, like
a Spark job that performs a few actions on some RDDs

» What about using TF for long-term jobs that continuously
process input, like events from a smart highway!?

The model still makes sense, but now fault-tolerance would be
an issue

Control of concurrency / consistency could begin to matter,
too.

88 Al

Adding Fault tolerance

server nodes:

worker nodes:

89

Al

Distinguished Leader

Hardcoded role. No worries about leader election, no
consensus

saver = tf.train. (

tf. (server.target)

. #sleep a bit
saver.save(sess,
(bad_thing happens):

saver.load(sess,

Adding Fault tolerance

server nodes:

worker nodes:

91

Al

Adding Fault tolerance

server nodes:

worker nodes:

92

Al

Adding Fault tolerance

server nodes:

worker nodes:

93

Al

Adding Fault tolerance

server nodes:

pu-

RESTART FROM CHECKPOINT!

94

Al

Adding Fault tolerance

server nodes:

worker nodes:

95

Al

Adding Fault tolerance

this |s very bad

i RO,
e eader

CALL THE OPERATOR! MANUAL INTERVENTION!

96

Al

Notes

» There are libraries, but they are still a bit painful.

» Remember to create frequent checkpoints
Bottom line is that by default, TF is not consistent and

is good at restarting from a checkpoint. Recent
events not in a checkpoint can be forgotten.

97 Al

TensorFlow implementation

» Semi-interpreted
» Call to kernel per

primitive operation Inference libs
» Can batch operations

with custom C++

» Basic type-safety within
dataflow graph (error at
graph (

gl"aPh construction time) Kernel implementations
» Global Names:

overlapping TF instances

Networking layer Device layer

share variables!

98 Al

Synchronous vs Asynchronous

» Determined by node: Queue nodes used for barriers
» Synchronous nearly as fast as asynchronous

» Default model is asynchronous

99

Al

Performance: Single Node

Training step time (ms)
Library AlexNet Overfeat OxfordNet GoogleNet
Caffe [38] 324 823 1068 1935

Neon [58] 87 211 320 270
Torch [17] 31 268 529 470
TensorFlow 31 279 540 445

100 Al

Performance: Distributed Throughput

(a) Baseline performance vs. MXNet (b) Coordination scalability

Images/second

TensorFlow v Asynchronous
- @ MXNet -] Synchronous

—
(0]
X~
S
o
=
S
©
c
(@]
&)
(0]
n
S,
)
(0]
©)
©
=

16 32 25 50 100

Number of workers Number of workers

101 Al

Key Contributions

» Programmability
» Accessibility / ease of use
» Richness of Libraries

» Ready-made community

102

Al

