
Cristina Nita -Rotaru

7610 : Distributed Systems

Leader election. Membership. Reliable Multicast. Virtual
Synchrony

Required reading for leader election …

! An improved algorithm for
decentralized extrema-finding in
circular elections of processes, E.
Chang and R. Roberts,
Communications of the ACM, 1979.

! Elections in a distributed computing
system, H. Garcia-Molina, IEEE
Transactions on Computers, 1982.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*567

1: Leader Election: Ring Algorithm

Leader Election

} Algorithm to select a single process as the coordinator of
some task distributed among several processes

} Correctness: When the election algorithm terminates a
single process has been selected and every process
knows its identity
} Safety: any process selects as leader the non-faulty process

with the best attribute value (usually highest id) or no leader is
selected

} Liveness: any instance of the election algorithm terminates and
any non-faulty process has selected a leader

Election. Membership. Reliable multicast. VS4

Leader Election - Challenges

} Nodes do not know apriori who is the leader
} Any process can start an election
} Processes communicate through messages, messages can

be lost, delayed, network can be partitioned
} Processes can crash, new leader needed
} Previously crashed process recovers may need new

election
} Processes can crash during leader election
} All nodes must agree on when election is over and who

the new coordinator is

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*567

Leader Election Algorithms - Model

! Each process has a unique number
! One process per machine
! Processes know each other’s process number
! Processes do not know the status of the other processes,

i.e. up or down
! Different network topologies, different algorithms for

different topologies
! Goal : In general, the process with the highest ID number

will be the new coordinator.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*567

Ring Algorithm

! Assumes that the processes are arranged in a logical ring
and each process knows the order of the ring of
processes (unidirectional).
! All messages are sent clockwise around the ring.

! Faulty processes are those that don’t respond in a fixed
amount of time.

! Even if two ELECTIONS started at once, everyone will
pick same leader since the node with highest identifier is
picked.

! Messages go around the ring till they return to the
initiator.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*567

Ring Algorithm

} When a process notices that current leader failed:
} Sends an ELECTION message to start the algorithm to its successor;

It contains its own id.
¨ (if successor is down, sender skips until a running process is located).

} When a process receives an ELECTION message:
} process adds its own id to the list and sends to successor.

} When ELECTION message gets back to the initiator (process
recognizes the message that contains its own id):
} Sends a LEADER message that announces the new leader and

contains: id of new leader (list member with highest number); List of
the members of the new ring. Message circulates around the ring.

} When the LEADER message gets back to initiator:
} Election is over if id of new leader is in ring id-list.

} Else the algorithm is repeated (handles election failure).Election. Membership. Reliable multicast. VS8

Example: Ring Election

Election: 2

Election:
2,3,4,0,1

Election: 2,3,4
Election: 2,3

Leader(4):
2

Leader(4):
2,3

Leader(4)
: 2,3,0,1

Election: 2

Election: 2,3

Election:
2,3,0

Election:
2,3,0,1

Leader(3):
2

Leader(3): 2,3

Leader(3):
2,3,0

Leader(3)
: 2,3,0,1

P1

P2

P3

P4

P0

P5

1. P2 initiates election

P1

P2

P3
P4

P0

P5

2. P2 receives �election�, P4 dies

P1

P2

P3
P4

P0

P5

3. P2 selects 4 and
announces the result

P1

P2

P3
P4

P0

P5

4. P2 receives �Coord�, but P4 is
not included

P1

P2

P3
P4

P0

P5

5. P2 re-initiates election

P1

P2

P3
P4

P0

P5

6. P3 is finally elected

Example from 425, Prof. Klara Nahrstedt

Election. Membership. Reliable multicast. VS9

Ring Algorithm Analysis

! Worst case 2(N-1) messages are passed (when does this
happen?)
! One round for the ELECTION message
! One round for the LEADER
! Assumes that only a single process starts an election.

! Multiple elections cause an increase in messages

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

1: Leader Election: Bully Algorithm

Bully Algorithm In a Nutshell

} Model
} Synchronous model
} Processes know each other’s ids
} A process can detect that another process failed based on

message transmission time and processing time

} Process p starts election
} When it detected that the coordinator has failed
} When it recovered from a crash

} High-numbered processes �bully� low-numbered
processes out of the election, until only one process
remains.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Bully Algorithm

} A process starts the algorithm by sending ELECTION
message to only the nodes that have a higher id than itself
} If no answer OK is received, then it announces itself as the

new leader to the lower processes, with a LEADER message
} If any OK is received, then there is a process with a higher id,

wait for the LEADER message; if none received start a new
election algorithm

} If a process received an ELECTION message, sends an
OK and then starts a new election, unless is has already

} If a process detects that the leader has failed and it has
the highest id, then sends a LEADER message to all
processes with lower identifiers

Election. Membership. Reliable multicast. VS13

Bully Algorithm Message Cost

! Best case: The node with second highest identifier
detects failure and elects itself
! Total messages = N-2

! One message for each of the other processes indicating the process
with the second highest identifier is the new coordinator

! Worst case: The node with lowest identifier detects
failure
! Total messages = O(N2)

! requires N-1 processes to initiate the election algorithm each sending
messages to processes with higher identifiers

Election. Membership. Reliable multicast. VS14

Example Bully Election

OK
OK

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives ��replies

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

OK

ElectionElection

Election

Election

Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

Leader

Example from 425, Prof. Klara Nahrstedt

Election. Membership. Reliable multicast. VS15

2: Membership

Membership Service

} Needed for distributed protocols that require knowledge
of alive processes
} Static: list is known before, track processes that crash
} Dynamic: processes can join, leave and crash

} Need to detect failures (Remember ! we know we can
not do it accurately)

} Need to agree on the current list of processes

Election. Membership. Reliable multicast. VS17

A Membership Protocol

! Leader: one of the processes (oldest) will act as leader
! Each process: maintains a list with alive processes (list has

to be the same)
! All processes: track each other (ping or I am alive)

! If timeout occurs - process that did not answer is considered
crashed, he will have to rejoin with another identifier

! Two cases:
! leader is alive (normal-case)
! leader fails

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Normal-Case

} Leader detects a failure or receives a join, he starts a
two-phase protocol to ensure the list of alive members is
updated consistently

} Phase 1: leader sends all add and delete events to
everybody
} Every process acknowledges
} Leader must wait for a majority of acknowledgements

} Phase 2: If leader receives majority, then sends the
modifications (may include any failure detected during
first phase)

Election. Membership. Reliable multicast. VS19

Leader Fails

! If a process detects that the leader failed, second process
on the list becomes the leader, three phase protocol

! Phase 1: new leader informs the other processes that
leader has failed, asks for pending add/delete operations,
collects acknowledgments and current membership
information

! Phase 2 and 3 similar with normal case

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

3: Reliable multicast

Unicast, Broadcast, Multicast

} Unicast: Messages are sent from exactly one process to
one process

} Broadcast: Messages are sent from exactly one process
to all processes on the network

} Multicast: Messages are sent from exactly one process
to several processes (referred as group) on the network

Election. Membership. Reliable multicast. VS22

Reliable Communication

} Unicast : one sender and one receiver
} Multicast : one sender and many receivers
} Reliable unicast : guarantees delivery of messages, if the

other party fails, there is no service
} Reliable multicast : ? What is the meaning of reliable

multicast in the context of process failures?

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Na•ve Approach

! Use a reliable one-to-one send operation:
! A basic multicast primitive guarantees a correct (non-

faulty) process will eventually deliver the message, as long
as the sender does not crash.

! What if the sender crashes after he sent the message and
some processes received the message and some other
did not?

Election. Membership. Reliable multicast. VS24

Meaning of Reliability in Multicast

! Integrity : A correct process p delivers a message m at
most once.

! Validity : If a correct process multicasts message m, then
it will eventually deliver m.
! Each process delivers its own messages

! Agreement : If a correct process delivers message m,
then all the other correct processes in the group will
eventually deliver m.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Ordered Multicast

! FIFO ordering : If a correct process multicasts m and
then multicasts m�, then every correct process that
delivers m� will have already delivered m.

! Causal ordering : If multicast m ! multicast m� then
any correct process that delivers m� will have already
delivered m.

! Total ordering : If a correct process delivers message m
before m�, then any other correct process that delivers
m� will have already delivered m.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Message Processing

!"#$%"&'(
)*"*"+,#- ./012

)*"*"

-"#$%"&

341,5$46
5"7706"7

89"4(,&-"&$46(
-"#$%"&'(6*0&04:""7(
0&"(5":;(5"7706"($7(
5,%"-(:,(-"#$%"&'(
)*"*"(

<#"1:$,4=(>"5/"&79$?=(@"#$0/#"(5*#:$107:=(ABCD

FIFO Reliable Multicast Algorithm

! Sp
G: count of messages p has sent to group G.

! Rq
G: the sequence of the latest message that p has delivered from q to the

group G.

! When sending: p multicasts message m to group G
! Sp

G = Sp
G + 1

! Sp
G is included with m

! When receiving: p receives message m from q with
sequence number S for group G:
! If S = Rq

G+1, p delivers m and Rq
G = Rq

G + 1
! If S > Rq

G+1, p places the message in the hold-back queue
(need to send other messages first)

! If S < Rq
G+1, p drops the message (old message)

Election. Membership. Reliable multicast. VS28

FIFO Example

!"

!#

!$

0 0 0 1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

"" "
"

"

Reject: 1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer hold-back
2 > 0 + 1

Accept: 1 = 0 + 1
2 0 0

Accept in deliver
buffer

2 = 1 + 1

Accept 1 = 0 + 1

%&'()*+,-./(,0#12,!./-3, 4*'.' 5'6.78+98

%*+:8;/<3,=+(>+.76;)3,?+*;'>*+,(@*8;:'783,AB#C

Example of FIFO ordering - 2

!" "
#$

$!

%"

%$

%#

&"'()**'+,*)-,./'"/'$/'#/'!/'
&$'()**'+,*)-,.'"/'$/'#/'!'
&#'()**'+,*)-,.'$/'"/'#/'!'

0,1123,1'4.56'+)44,.,78'1,7+,.1
927':,')78,.*,2-,+/'21'*573'21';<;='
)1',745.9,+'45.',29>'1,7+,.

?*,98)57@'0,6:,.1>)%@'A,*)2:*,'6B*8)9218@'CD#E

Example of FIFO ordering - 3

41 1
3 32

2 4

p1

p2

p3

P1 will deliver, 1, 3, 2, 4,
P2 will deliver 1, 2, 3, 4
P3 will deliver 2, 1, 3, 4

Election. Membership. Reliable multicast. VS31

Causal ordering

!

"

#!

#"

#$

%&'()*'+),-.)/',)'0-.()
12//'32/)!)'+4)"5
6'+)#$)427892:)")8/)&2);'+(/)(-)
#:2/2:92)*'./'7)-:42:8+35

Causal ordering<)=>)1.7(8*'/()1)à 1.7(8*'/()1 � (&2+)
'+,)*-::2*()#:-*2//)(&'()427892:/)1 � ;877)&'92)'7:2'4,)
427892:24)1?

!

"

#!

#"

#$

6'+)#$)427892:)")8/)&2);'+(/)
(-)#:2/2:92)*'./'7)-:42:8+35

@72*(8-+?)A2102:/&8#?)B278'072)1.7(8*'/(?)CD$"

Causal Multicast Algorithm

! Use vector clocks:
V(a) < V(b) iff a happens before b

! Each process maintains a vector clock per group
l VG

i[j] counts the number of group G messages from process j
to process I delivered to the application

! When process i receives a <m,VG
j> from j, then

! VG
i[k] = max(VG

i[k], VG
j[k]) if k ≠ i

! VG
i[k] = VG

i[k] + 1 if k = i

Election. Membership. Reliable multicast. VS33

Causal Reliable Multicast

! Initialize VG
i [j] = 0, j = 1, 2, …N processes

! When sending: process i to group G
! VG

i [i] = VG
i [i] + 1 (increment state of i)

! Send message with entire vector VG
i

! When receiving: process i received m from process j
for group G
! Put m, VG

j in hold-back queue
! Wait till causality is met VG

j [j] = VG
i [j] + 1 and VG

j [k] ≤ VG
i

[k], any k ≠ j
then deliver m and VG

i [j] = VG
i [j] + 1

Election. Membership. Reliable multicast. VS34

!"#$%&'

()

(*

(+
(1,1,0)

Reject:

Accept

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer missing P1(1)
(1,1,0) >(0,1,0)

1,1,0

1,1,0

1,1,0

Accept

1,0,0

Accept in
deliver buffer

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept

Causality is met VG
j [j] = VG

i [j] + 1 and VG
j [k] ≤ VG

i [k], any k ≠ j

!"#$%&',-./$,0*12,(./-3, 4&#.#5#6.78'98

!&':8;/<3,='$>'.76;%3,?'&;#>&',$@&8;:#783,AB+1

!"#$%&'()%#*+',+'-%$.)'/&0"&

12

13

14

15

3'.60'4'.&"'6%$'#.7+.))8'&").$"0'99999

:2';<))'0")<,"&='2='3='4'
:3';<))'0")<,"&''2='3='4''
:4';<))'0")<,"&''2='4='3
:5';<))'0")<,"&''2='4='3'

2
3

4

>)"#$<%6?'@"AB"&+C<1?'D")<.B)"'A7)$<#.+$?'!E4F

Isis

! Toolkit for distributed programming
! Useful for managing replicated data, synchronizing

distributed computations, automating recovery, and
dynamically reconfiguring a system to accommodate
changing workloads

! Developed at Cornell

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Isis Total Ordered Multicast

} Uses sequences associated with each message and ID of
processes to determine order

} Each process maintains a queue with messages received
} Messages can be ready to deliver or not based on what a

process knows about what other processes did (the
sequence)

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Isis Total Ordered Multicast (cont)

Sender multicasts the message to everyone
Upon receiving a message M each receiver Ri

1. Adds M to the queue
2. Marks the message undeliverable
3. Sends ackto the sender with a sequence number seqthat is the latest

sequence number received+ 1, suffixed with the Ri!s ID.

Sender collects all acksfrom the receivers
1. calculates final_seq= maximum ({seqi})
2. multicasts final_seqto all processes

Upon receiving final seqeach receiver
1. marks M as deliverable,
2. reorders the queue based on seq
3. delivers the set of messages with lower seq and marked as deliverable.

"#$%&'()*+,$-.$/01'2*+3$#'4.#$+-5#&'%40&*+6789

Example Total Order

!"

!#

!$

!"#"

%&''()&'*(+&*(,'-*.(/'(,,0*-+1&+&1
23(4*(+&*43&*.3(5)&'*67*!"*+&.&68&'*9.:"*;&7-+&*%#<
23(4*(+&*43&*.3(5)&'*6'*!#*+&.&68&'*="*(74&+*'&5165)*=%<

!$#%

!$#%

&'("#)$ &'("#)*
*

!+,-$#*.

/

/
!"#"

&'($#)/

&'($#)/

!+,-/#/.

*

>,&.46-5?*%&=;&+'36@?*A&,6(;,&*=/,46.('4?*BCDE

TOTEM: The single-ring protocol

} Uses a circulating token containing among others:
} A seqfield with the sequence number of the last message that

was sent
} An aru field with the sequence number of the last message that

has been received by all processors, replaces acks

} Only the processor that holds the token can send a
message

Election. Membership. Reliable multicast. VS41

Meaning of SEQ and ARU

} Provides total order on message
} Used to detect gaps and request retransmissions through

a field in the token
} After a full token rotation process can determine all

processes have received all message with lower sequence
numbers

Election. Membership. Reliable multicast. VS42

Using the aru

} If token.aru = token.seq and have all the messages then
the process should set aru higher and seq when sending
new messages

} If missed a message with m.seq smaller than then should
set token.aru = m.seq

} If is the one that lowered the aru and the token.aru is still
the same, should set token.aru = local.aru

Election. Membership. Reliable multicast. VS43

Safe Delivery

! Consistent with Total/Agreed order.

! Message is delivered after received by all processors.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5677

TOTEM: The single-ring protocol (II)

! aru field used to implement safe delivery:
! Tells processors which messages have been received by every

processor in the ring

! Token also provides information about the aggregate
message backlog of the processors on the ring
! Results in a fairer bandwidth allocation among processors

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Membership and Reliable Multicast

! Message delivery
! Group membership changes
! They are interleaved
! Does this matter?

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Summary

! Leader election algorithms: usually
select the process with the highest id,
network topology determines
complexity in terms of number of
messages

! Membership services must take into
account leader failures

! Meaning of reliable muticastis more
complex than for reliable unicast,
different ordering guarantees: FIFO,
causal, total order

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

3: Virtual Synchrony

Required reading for this topic…

} Exploiting virtual synchrony in
distributed systems, K Birman and T.
Joseph, SOSP 1987

} Extended Virtual Synchrony, L. E. Moser , Y.
Amir , P. M. Melliar-Smith , D. A. Agarwal,
DISC 1994

} Group Communication Specifications: A
Comprehensive Study. Gregory V. Chockler,
Idit Keidar, and Roman Vitenberg. ACM
Computing Surveys, 2001.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Systems É

! www.spread.org
! http://www.cs.huji.ac.il/labs/transis/lab-
projects/guide/intro.html

! http://www.cs.huji.ac.il/labs/transis/lab-
projects/guide/chap3.html

! http://www.cs.cornell.edu/Info/Projects/ISIS/

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Process Groups

! One way of building distributed fault-tolerant systems by
organizing them in a group and ensuring group
membership and group multicast, with different ordering
properties.

! Easier to work with when providing in the form of a
toolkit.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Implementation

! Reliable and ordered message delivery (unicast and broadcast)
! Group membership service may support process failures, network

partitions and merges

Group A

Group B

! Either client-server (as in the picture) - servers perform the
distributed protocols, clients and groups are lightweight

! Or completely distributed, limited scalability

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Semantics

! View: list of group members at a
certain time

! Semantics: define how the
membership and the messages are
interleaved and what is the service
provided to the applications

! Useful for implementing other
distributed applications such as: state
transfer, replicated data, load
balancing.

! Two models: Virtual
Synchrony Model (VS) and
Extended Virtual Synchrony
Model (EVS)

Viewt1: {A, B, C}

Viewt2: {A, B}

Viewt3: {A, B, D}

Ti
m

e

C crashes

D joins

Election. Membership. Reliable multicast. VS53

Ordered Multicast

! FIFO ordering : If a correct process multicasts m and
then multicasts m��, then every correct process that
delivers m�� will have already delivered m.

! Causal ordering : If multicast m ! multicast m�� then
any correct process that delivers m�� will have already
delivered m.

! Total ordering : If a correct process delivers message m
before m��, then any other correct process that delivers
m�� will have already delivered m.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Safe Delivery

! Consistent with Total/Agreed order.

! Message is delivered after received by all processes
(processes send ack) .

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5677

Why Virtual Synchrony?

! Ideally: events are in the same order for any two
processes, messages delivers to all process at the same
moment …

! Impossible
! Events need to be synchronized only to the degree

application is sensitive to ordering

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Virtual Synchrony Model

! The model relates to message and view delivery, and
relationship between messages and views.

! Views consist of list of members, have unique identifiers.
! Membership changes are totally ordered with respect to

all regular messages that pass in the system.
! The order of the regular messages is determined by the

delivery service (fifo, causal, agreed).

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Processes that move together through the same views,
deliver the same set of messages.

Virtual Synchrony Model

! 1. Self Inclusion
If process p installs a view v then p is a member of v.

! 2. Local Monotonicity
If process p installs a view v after installing a view v' then the

identifier id of v is greater than the identifier id' of v'.

! 3. Self Delivery
If process p sends a message m, then p delivers m unless it

crashes.

! 4. Delivery Integrity
If process p delivers a message m in a view v, then there exists a

process q that sent m in v causally before p delivered m.

! 5. No Duplication
A message is sent only once. A message is delivered only once to

the same process.
!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Virtual Synchrony Model

! 6. Sending View Delivery
A message is delivered in the view that it was sent in.

! 7. Virtual Synchrony
Two processes that move together through two

consecutive views deliver the same set of messages in the
former view.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Virtual Synchrony Model

! 8. Causal Delivery
If message m causally precedes message m', and both are
sent in the same view, then any process q that delivers m'
delivers m before m'.

! 9. Agreed Delivery
- Agreed delivery maintains causal delivery guarantees.
- If agreed messages m and m' are delivered at process p
in this order, and m and m' are delivered by process q,
then m is delivered before m' by q.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

How to Provide Virtual Synchrony?

! Messages can be lost
! Before moving into new view, exchange message to flush

all the messages from previous view
! Application message are blocked during view change
! Joins are not allowed during view change

Election. Membership. Reliable multicast. VS61

Virtual Synchrony and Network
Partitions

! Virtual Synchrony was introduced in a model that did not
consider network partitions, fail stop failure (ISIS)

! Later extended to network partitions (TRANSIS, SPREAD)
! Allows operation to be partitionable in order to support crash

recoveries and network partitions:
! If a process group partitions into subsets that cannot

communicate with each other, each subset continues observing
the (partitionable) Virtual Synchrony model separately.

! Upon re-merging, the merged set will be virtually synchronized
from the merging membership change message.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Extended Virtual Synchrony (EVS)

} Major difference is
} 6. Sending View Delivery

A message is delivered in the view that it was sent in.

} 6. Same View Delivery
A message is delivered in the same view.

} Better performance, message can be delivered faster.
} Delivery view is not necessary the same as sending view

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

EVS: Main Idea

! While noticing a membership change, the new view is not
immediately delivered to the application
! System switches into a transitional phase trying to

! recover lost messages from the current view

! achieve consistency among configuration members that are still
connected.

! New messages from the application are buffered until the
transitional phase ends and a new view is reached.

! The new membership is delivered to the application
! Previously buffered messages are multicast and processed

together with new messages from the applications.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

FIFO and EVS

! Assume a membership change takes place and some process p in
the current view notices it missed a message
! p requests the missed message.
! If p is still connected to other members of the configuration, and

some received that message, he will receive the lost message
! If there is no connected member that received this message - then

this does not contradict the virtual synchrony or FIFO

! When we can not deliver messages?
! If all connected members received the ith message m�� from process

p, but missed the (i-1)th message m from p, and p is no longer
reachable, then m�� could not be delivered because it would
contradict the FIFO mode guarantees.

! Note that the delivery view will not necessary be the same as the
sending view. Election. Membership. Reliable multicast. VS65

Causal and EVS

! Similar to FIFO in recovering lost messages if possible.
! When we can not deliver a message?:

! If all connected members have received the ith message m from process
p that is no longer reachable, but missed the message m�� that could be
the (i-1)th message from that same process p, or the jth message from
another process q that is also no longer reachable, then m could not be
delivered because the causality principle is violated.

! Notice that if the network partitions and several detached
components of the same configuration are created, then each
could deliver a different set of messages, depending on the
knowledge of the component members.
! if p is in another component, then this component will deliver m (unless

causality is contradicted by a former lost message m��). This will not
contradict the Virtual Synchrony model's guarantees since the following
membership change message each component delivers is different. !"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5677

Agreed and EVS

! Lost messages are recovered if possible
! Messages that may contradict the causality principle are

not delivered.
! For example a message m that causally follows a lost message

m�� can not be delivered because it will contradict causality.

! (C1) Every process must deliver its own messages;
however, although they are buffered, they can not be
delivered before they are totally ordered.

! Messages may be lost, or become undeliverable
after a membership change. A lost or an
undeliverable message creates a hole in the total
order.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Agreed and EVS (cont.)

! Consider the case that a message m sent by process p is totally
ordered after a hole that stands for message m��.
! If message m is not delivered, C1 is contradicted.

! If message m is delivered in the current configuration, then total order is
not kept throughout the configuration, since in another component
message m' may be accessible, and will be delivered before message m.

! Solution: Use a transitional configuration which contains
members of the current regular configuration that are still
connected
! It begins when a membership change starts, and lasts until it is

completed and a membership change is delivered to the application.

! Messages such as m are delivered in the transitional
configuration.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Safe and EVS

! A safe message may only be delivered to the application when all
other processes in the configuration have ackedthat message.

! Consider the case when some process does not ack, or if that
ackdid not reach all processors just before a membership change
started
! If some of the connected processors received the ack, they can

retransmit it, and that message could be delivered as part of the current
(unchanged) configuration.

! If a processor did not ack, or the ackwas lost by all connected members
of the configuration, then the message cannot be delivered as safe in the
current configuration C.

! The solution is to use a transitional configuration. In this
configuration, messages receive acksfrom all members, and
therefore can be delivered as safe in this context.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

!"#$%&'()*+,%-./01(),+21./

! &'()*+,%3./01(),+21./%14%25'%3./01(),+21./%1/%65135%,'()*+,%
7'44+('4%+,'%4'/2%+/8%8'*19','8:%;<;=%>+2.713?%+/8%
3+)4+*%3.77)/13+21./%7.8'4%/''8%2.%)4'%./*@%2514%
3./01(),+21./%2@A'%1/%.,8',%2.%8'*19',%7'44+('4:

!*'321./:%B'7C',451A:%&'*1+C*'%7)*213+42:%"#DE

!"#$%&'()*+,+-)(.%/-)0+12'(,+-)

! 3*45%,-%6-''46,.7%540+)4%()5%+89.484),%,-,(.%-'54'%()5%*(04%
6-882)+6(,+-)%8-54*%+)%(%9(',+,+-)(:.4 4);+'-)84),<%&=4%
,'()*+,+-)(.%6-)0+12'(,+-)%6-)*+*,*%-0%848:4'*%,=(,%6-84%5+'46,.7%
0'-8%,=4%*(84%'412.('%6-)0+12'(,+-)%()5%,=(,%>+..%(.*-%:4%848:4'*%-0%
,=4%*(84%02,2'4%'412.('%6-)0+12'(,+-)<
! (..->*%54.+;4'7%-0%84**(14*%0-..->+)1%=-.4*%82.,+6(*,%+)%,=4%9'+-'%'412.('%

6-)0+12'(,+-)<%

! ?%'412.('%6-)0+12'(,+-)%8(7%:4%0-..->45%:7%*4;4'(.%,'()*+,+-)(.%
6-)0+12'(,+-)*%@>=4)%*4;4'(.%6-89-)4),*%54,(6=AB%()5%9'464545%:7%
4;4'(.%,'()+,+-)(.%6-)0+12'(,+-)*%@>=4)%*4;4'(.%6-89-)4),*%
84'14A<%?%,'()*+,+-)(.%6-)0+12'(,+-)B%+)%6-),'(*,B%+*%+8845+(,4.7%
9'464545%()5%0-..->45%:7%(%*+)1.4%'412.('%6-)0+12'(,+-)<%

!.46,+-)<%C48:4'*=+9<%D4.+(:.4%82.,+6(*,<%"#EF

Transitional Configuration

! 11. Transitional Set
- Every process is part of its transitional set for a view v.
- If two processes p and q install the same view, and q is included in p's

transitional set for this view then p's previous view was identical to q's
previous view.
- If two processes p and q install the same view v, and q is included in p's
transitional set for v then p and q have the same transitional set for v.

! 12. Transitional Signal
- Each process delivers exactly one transitional signal per view.
- If two processes p and q install the same view v and q is included in p's

transitional set for v then p and q deliver the same set of agreed messages
before and after the transitional signal.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Agreed and Transitional Configuration

! 9. Agreed Delivery
- Agreed delivery maintains causal delivery guarantees.
- If agreed messages m and m' are delivered at process p
in this order, and m and m' are delivered by process q,
then m is delivered before m' by q.
- If agreed messages m and m' are delivered by process p
in view v in this order, and m' is delivered by process q in
v before a transitional signal, then q delivers m. If
messages m and m' are delivered by process p in view v in
this order, and m' is delivered by process q in v after a
transitional signal, then q delivers m if r, the sender of m,
belongs to q's transitional set.

! Election. Membership. Reliable multicast. VS73

Safe and Transitional Configuration

! 10. Safe Delivery
- Safe delivery maintains agreed delivery guarantees.
- If process p delivers a safe message m in view v before
the transitional signal, then every process q of view v
delivers m unless it crashes. If process p delivers a safe
message m in view v after the transitional signal, then
every process q that belongs to p's transitional set
delivers m after the transitional signal unless it crashes.

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

Systems Providing Virtual Synchrony

! Isis: Introduced VS and no longer widely used
! Developed at Cornell

! Very successful; has major roles in NYSE, Swiss Exchange, French Air
Traffic Control system (two major subsystems of it), US AEGIS Naval
warship

! Also was first to offer a publish-subscribe interface that mapped topics
to groups

! !"#$%&'()& !*'(+,+
! !"#$%&-./012&3$(#&"(&#"&4$5"%$&6#$*('7&'()&3'+$&4'+,+&"9&

#8$&/:;1<&9'=7#>#"7$*'(5$&+#'()'*)

! !*'(+,+ -?$4*$3&.(,@$*+,#A2&4$5'%$&'&+B$5,'7,+#&,(&#"7$*'#,(C&
B'*#,#,"(,(C&9',7=*$+

67$5#,"(D&E$%4$*+8,BD&;$7,'47$&%=7#,5'+#D&F0GH

!"#$%&#'()*+,-,./'0,)$123'!".45)*."

! 6*)1#'2.-'7.#%&83%
! 9%+%3*:%-'2$';*).%33<'#144%##*)#'$*'=#,#
! >*$5'?*41#'*.'?3%@,83%':)*$*4*3'#$24A'3,.A%-'-,)%4$3"',.$*'

2::3,42$,*.'2--)%##'#:24%
! B'#$24A',#'2':,3%'*?'&,4)*C:)*$*4*3#
! ;2.'2##%&83%'2.'*:$,&,D%-'#*31$,*.'?,$$%-'$*'#:%4,?,4'.%%-#'*?'

$5%'2::3,42$,*.'8"':31//,./'$*/%$5%)' E:)*:%)$,%#'$5,#'2::3,42$,*.'
)%F1,)%#GH'3%/*C#$"3%

! I5%'#"#$%&',#'*:$,&,D%-'$*')%-14%'*+%)5%2-#'*?'$5,#'
4*&:*#,$,*.23'#$"3%'*?':)*$*4*3'#$24A

! 7.#%&83%',#')%32$,+%3"':*:132)'2.-'#1::*)$%-'8"'2'1#%)'
4*&&1.,$"J''6*)1#'K*)A#'K%33'81$',#'.*$'K,-%3"'1#%-J

73%4$,*.J'L%&8%)#5,:J'M%3,283%'&13$,42#$J'0!NO

!"#$%&#'()*+,-,./'0,)$123'!".45)*."

} !6)%2-'7**38,$
} 9%+%3*6%-'2$':*5.';*68,.#
} 0%)"'#,&63%'2)45,$%4$1)%'2.-'#"#$%&
} <2,)3"'=2#$>'%2#"'$*'1#%>')2$5%)'6*6132)
} !166*)$#'*.%'32)/%'/)*16'?,$5,.'?5,45'1#%)'#%%#'&2."'

#&233'@3,/5$?%,/5$A#1B/)*16#'52'#%%&'$*'B%'=)%%C
#$2.-,./

} ()*$*4*3#',&63%&%.$%-'B"'!6)%2-'#%)+%)#'52')%32"'
&%##2/%#'$*'43,%.$#

D3%4$,*.E'F%&B%)#5,6E'G%3,2B3%'&13$,42#$E'0!HH

Summary

! Virtual Synchrony: Processes that
move together through the same
views, deliver the same set of
messages.

! Virtual synchrony blocks application
from sending messages

! Both crash failure and network
partition supported

! Extended Virtual Synchrony, improved
performance, more complexity, uses a
transitional configuration

!"#$%&'()*+#,-#./0&1)*2#"&3-"#*,4"%&$3/%)*5678

