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Physical and logical clocks. Global states. Failure detection.



Ordering events in distributed systems

} Time is essential for ordering events in a distributed 
system
} Physical time: local clock; global clock
} Logical time: Lamport clocks, vector clocks
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1: Physical Clocks



Historical clocks

} Humans used a variety of devices to 
measure time
} Sundials
} Astronomical clocks
} Candle clocks
} Hourglasses

} Mechanical clocks developed in 
medieval ages
} Typically maintained by monks (church bell 

tower)

Ordering. Global states. Failures.4



Electrical clocks

} First developed in 1920s
} Uses carefully shaped quartz crystal
} Pass current, counts oscillations

} Most oscillate at 32,768/sec
} Easy to count in hardware
} Small enough to fit (~4mm)

} Typical quartz clock quite accurate
} Within 15 sec/30 days (6e-6)
} Can achieve 1e-7 accuracy in controlled 

conditions
} Not good enough for today’s applications

Ordering. Global states. Failures.5



Atomic clocks

} Based on atomic physics
} Cool atoms to near absolute zero
} Bombard them with microwaves
} Count transitions between energy levels

} Most accurate timekeeping devices
} Accurate to within 10-9 seconds per day
} E.g., loses 1 second in 30 million years

} Standard International second defined 
in terms of atomic oscillations
} 9,192,631,770 transitions of cesium-133 

atom
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GMT, UT1, and UTC

} GMT: Greenwich Mean Time
} Originally, mean solar time at 0º longitude
} This isn’t really “noon” due to Earth’s axial tilt

} UT1: Universal Time
} Modernized version of GMT
} Based on rotation of Earth, ~86,400 seconds/day

} UTC: Universal Coordinated Time
} UT1 + leap seconds
} Minutes can have 59-61 seconds
} Since 1972, 25 leap seconds have been introduced
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International Atomic Time

8
} Atomic clocks used to define a number of time standards
} TAI:  International Atomic Time

} Avg. of 200 atomic clocks, corrected for time dilation

} Essentially, a count of the number of seconds passed

} Count was 0 on Jan. 1, 1958
} UTC: since January 1, 1972, it has been defined to follow 

TAI with an exact offset of an integer number of seconds, 
changing only when a leap second is added to keep clock 
time synchronized with the rotation of the Earth. 
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Using real clocks to order events

} Each event will carry a timestamp 
} Global clock: processes have access to a central global 

clock
} The global clock gives global ordering of events

} Local clock: each process has its own clock
} What if the clocks are not synchronized
} What if events happened at the same time? 
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Clocks in computers

} Real-time clock: CMOS clock (counter) circuit driven 
by a quartz oscillator with battery backup to continue 
measuring time when power is off

} OS generally programs a timer circuit to generate an 
interrupt periodically
} e.g., 60, 100, 250, 1000 interrupts per second

(Linux 2.6+ adjustable up to 1000 Hz)
} Programmable Interval Timer (PIT) – Intel 8253, 8254
} Interrupt service procedure adds 1 to a counter in memory

} Quartz oscillators oscillate at slightly different 
frequencies, clocks do not agree in general !!!
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What does it mean for a clock to be correct?

} Relative to an “ideal” clock
} Clock skew is magnitude
} Clock drift is difference in rates

} Say clock is correct within p if

(1-p)(t’-t) ≤ H(t’) - H(t) ≤ (1+p)(t’-t)

} (t’-t)  True length of interval
} H(t’) - H(t)  Measured length of interval
} (1-p)(t’-t)  Smallest acceptable measurement
} (1+p)(t’-t)  Largest acceptable measurement

} Monotonic property:  t < t’  ⇒ H(t) < H(t’)
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Monotonicity

} If a clock is running “slow” relative to real time
} Can simply re-set the clock to real time
} Doesn’t break monotonicity

} But, if a clock is running “fast”, what to do?
} Re-setting the clock back breaks monotonicity
} Imagine programming with the same time occurring twice

} Instead, “slow down” clock 
} Maintains monotonicity
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Cristian�s Algorithm

} Assumes a time server has 
the accurate time and a 
client synchronizes with
} Client asks the time server 

for time 
} Server sends its time Tserver

} Client estimates how long it 
takes to receive answer from 
server as RTT/2 where:

} RTT = (Tclient_receive – Tclient_send)

} Client adjusts its clock
Tclient = Tserver + (RTT / 2) 
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Cristian�s Algorithm accuracy

} Assumes that it takes the same amount of time to send 
the request and receive the answer

} Minimum time to transmit a message one-way: min
} Time to receive the server�s message is [min, RTT – min]
} Time at client [Tserver + min, Tserver + RTT – min]

accuracy is �(RTT /2 - min)
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Berkeley Algorithm

} Assumes no machine has an accurate time source; uses an 
elected master to synchronize 

} Master coordinates:
} Queries all clients for their local time
} Estimates the clients� local time (similar to Cristian�s 

Algorithm)
} Averages all times including its own, excluding the ones that 

are too drifted
} Tells each client the offset with each they need to adjust

} Some systems use multiple time servers
} Time is more accurate, but still drifts
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Network Time Protocol (NTP)

} NTP is a distributed service that 
} Keeps machines synchronized to UTC
} Deals with lengthy losses of connectivity 
} Enables clients to synchronized frequently (scalable)
} Avoids security attacks

} NTP deployed widely today
} Uses 64-bit value, epoch is 1/1/1900 (rollover in 2036)
} LANs: Precision to 1ms
} Internet: Precision to 10s of ms
} NTP pool is a dynamic collection of computers that 

volunteer to provide time via the NTP, about 4000 servers
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NTP Hierarchy

} Based on hierarchy of accuracy, called 
strata
} Stratum 0:  High-precision atomic clocks
} Stratum 1:  Hosts directly connected to 

atomic clocks
} Stratum 2:  Hosts that run NTP with 

stratum 1 hosts
} Stratum 3:  Hosts that run NTP with 

stratum 2 hosts
} …

} Stratum x hosts often synch with other 
stratum x hosts
} Provides redundancy
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Reference clocks

} Many NTP servers synchronize directly to UTC using 
specialized equipment
} Atomic clocks: Ultimately are the root source of time in 

NTP
} Global Positioning System (GPS): can synchronize with a 

satellite’s atomic clock
} Code Division Multiple Access (CDMA): can synchronize 

with a local wireless provider (who in turn most likely 
synchronizes using GPS)

} Radio signals: similar to CDMA, can synchronize with 
time/frequency radio stations
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NTP 
server

client
T1

T2 T3

T4

On-the-wire protocol

} Client initiates request by recording timestamp T1, placing in 
packet, then sending to NTP server

} NTP Server records timestamp T2 when receiving request 
packet (and can do other processing if needed)

} When ready to send a reply, the NTP server records 
timestamp T3, places T1, T2, T3 in reply and sends back to 
client

} Client receives reply and records timestamp T4

T
1

T
1
T
2
T
3
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Updating the clock

} Client calculates offset between his clock and server�s 
clock, and updates his clock by that amount

} To synchronize exactly, client needs to know one-way 
delay between server and client
} This is difficult in practice to ascertain, so NTP assumes path is 

symmetrical and one-way delay is half of round trip time
} Offset is calculated to be: ½ [(T2 - T1) + (T3 - T4)]
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NTP in practice

} Run on UDP port 123
} Most Internet hosts support NTP

} Accuracy on general Internet is ~10ms
} Up to 1ms on local networks, ideal conditions

} Many networks run local NTP servers 
} E.g., time.ccs.neu.edu

} NTP has recently been a vector for DDoS attacks
} Best practice is for servers to filter requests outside local 

network 
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2: Logical Clocks



From physical clocks to logical clocks

} Synchronized clocks are great if we have them
} Why do we need the time anyway?
} In distributed systems we care about �what happened 

before what�

} Message-based systems, two type of events
} Send a message
} Receive a message
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``HAPPENED BEFORE’’ ®

} If events a and b take place at the same process and a 
occurs before b (physical time)  then we have  a ® b

} If a is a send event of message m at p1 and b is a deliver 
event of the same m at p2, p1 ≠ p2 then  a ® b

} If  a ® b  and   b ® c then  a ® c

p2

p3

p1

p4
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Reminder: Partial and Total Order 

} Definition: A relation R over a set S is a partial order iff
for each a, b, and c in S:
} aRa (reflexive).
} aRb Ù bRa Þ a = b (antisymmetric).
} aRb Ù bRc Þ aRc (transitive).

} Definition: A relation R over a set S is total order if for 
each distinct a and b in S, R is antisymmetric, transitive 
and either aRb or bRa (completeness).
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Logical Clocks: Lamport Clocks 

} Each process maintains his own clock Ci (a counter)
} Clock Condition: for any events a and b in process pi

if a ® b then Ci(a)  <  Ci(b)

} Implementation:
} each process  pi increments Ci between any successive events
} on sending  a message m, attach to the message local clock 

Tm = Ci(a)

} on receiving of message m process pk sets Ck to
Ck = max(Ck ,Tm) + 1
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Lamport Clocks: Example

p1

p2

p3

1

2 3 6 7 8

4 5 6 9

8
7
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Lamport Clocks: Total Order

} Logical Clocks only provide partial order
} Create Total Order by breaking the ties 
} Example to break ties, use process identifiers, have an 

order on process identifiers:
} If a is event in pi and b is event in pj then     

a ® b    iff
} Ci(a) < Cj(b)   or
} Ci(a) = Cj(b)  and pi < pj
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Concurrent events

} Concurrent events:
If a ®b and b ®a then a and b are concurrent

} Logical clocks assign order to events that are causally 
independent, in other words events that are causally 
independent appear as if they happened in a certain order 

} For some applications (e.g. debugging) it is important to 
capture independence
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Vector Clocks

} Independently developed by Colin Fidge and Friedemann 
Mattern in 1988.

} Each process pi maintains a vector Ci

Ci =  [0, 0, ..., 0].
} When pi executes an event, it increments its own clock Ci[i] 
} When pi sends a message m to pj, it attaches its vector Ci on m.
} When pi receives a message m, increments its own clock and 

updates the clock for the other processes as follows
" j: 1 £ j £ n, j ¹ i: Ci[j] = max(Ci[j], m.C[j])
Ci[i] = Ci[i] + 1.
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Vector Clocks: Example

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

M1[010]

M2[210]
M6[512]

M3[212] M4[213]

M5[412]
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How to Order with Vector Clocks

} Given two events a and b,   a ® b if and only if

} V(a) is less than or equal to V(b)  for all process indices, 
and at least one of those relationships is strictly smaller.

} Otherwise, we say they are concurrent or independent ||

} a ® b º " i: 1 £ i £ n: V(a)[i] £V(b)[i] 
Ù $ i: 1 £ i £ n: V(a)[i] < V(b)[i]

} a || b º $ i: 1 £ i £ n: V(a)[i] < V(b)[i]
Ù $ j: 1 £ j £ n: V(b)[j] < V(a)[j]
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What Events Are Independent?

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

m1

m2
m6

m3
m4

m5

Ordering. Global states. Failures.33



3: Global states and Chandi-Lamport Snapshot 
Algorithm.



Why do we need global snapshots?

} Global snaphot gives you the “global view”  of the system 
Examples of applications where global snapshots are 
useful:
} Checkpointing: save the state and restart the distributed 

application after a failure
} Garbage collection of objects: objects at servers that don’t 

have any other objects (at any servers) with pointers to 
them

} Deadlock detection: debugging for database transaction 
systems

} Termination of computation:  useful for batch computing 
systems
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Recording global snapshots

} If synchronized clocks are available, each 
process records its state at a known time t
} How to obtain the state of the messages that 

transit the channels?

} If synchronized clocks are not available?
} How to determine when a process takes its 

snapshot?
} How to distinguish between the messages to 

be recorded in the snapshot from those not to 
be recorded?
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Chandy-Lamport Algorithm: Model

} System model:
} No failures and all messages arrive intact and only once
} Communication channels are unidirectional and FIFO ordered
} There is a communication path between any two processes

} Other assumptions
} Any process may initiate the snapshot algorithm
} The snapshot algorithm does not interfere with the normal 

execution of the processes
} Each process records its local state and the state of its incoming 

channels
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Records a consistent global state of an 
asynchronous system.



Chandy-Lamport Algorithm

} A process needs to know 
} When to start recording (in case it was not the one that 

initiated the algorithm)
} What messages to include in the snapshot
} When did all the other processes recorded their snapshot

} Key design: uses a control message, marker
} to separate messages  between those to be included in the 

snapshot from those not to be recorded in the snapshot.
} To inform other processed that it has recorded its snapshot
} To inform other processed to start recording: A process must 

record its snapshot no later than when it receives a marker on 
any of its incoming channels.
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Chandy-Lamport Algorithm

} Can be initiated by any process by executing the �Marker 
Sending Rule�

} A process executes the �Marker Receiving Rule� on 
receiving a marker. 
} If the process has not yet recorded its local state, it records 

the state of the channel on which the marker is received as 
empty and executes the �Marker Sending Rule� to record its 
local state.

} The algorithm terminates after each process has received 
a marker on all of its incoming channels. 

} All the local snapshots get disseminated to all other processes 
and all the processes can determine the global state.
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Chandy/Lamport Snapshot Algorithm

} Marker-sending rule for a process p:
} Saves its own local state
} Sends a marker to all other processes on their corresponding 

channels before sending any other message

} Marker-receiving rule for a process q on channel c
} If q has not recorded its state then

} q records its state
} q record the state of incoming channel c as �empty�
} turn on recording of messages over other incoming channels
} for each outgoing channel c, send a marker on c 

} else
} q records the state of incoming channel c as all the messages received 

over c after q recorded its state and before q received the marker 
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Example of Chandy-Lamport Algorithm
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} Three processes p, q and r.  Communication channels, c1 
(p to q), c2 (q to p), c3 (q to r), and c4 (r to p).They all 
start with state = $500 and the channels are empty. The 
stable property is that the total amount of money is 
$1500.

} Process p sends $10 to q and then starts the snapshot 
algorithm: records its current state 490 and sends out a 
marker on c1.

} Meanwhile q has sent $20 to p along c2 and 10 to r along 
c3.



Ordering. Global states. Failures.42



Ordering. Global states. Failures.43



Ordering. Global states. Failures.44



Correctness for Chandi-Lamport

} How do we define correctness in this case?
} Records a consistent global state of an asynchronous 

system.
} We need some definitions
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History of events

} Given a process pi

} Event ei
j is the event j at process i

} History of process pi, hi is a sequence of events that 
happened at pi

hi = <ei
0, ei

1, … >
} Prefix history at pi up to k, is the history of pi up to the 

kth event 
hi

k = <ei
0, ei

1, …,ei
k >

} State Si
k is the state of process pi immediately before the 

kth event
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History of events: More definitions

} Given a set of processes
} Global history: the set of all processes� histories

} H = Èi (hi)

} Global state: the set of states at each process
S = Èi (Si

ki)
} Cut: a set of prefix histories

C Í H = h1
c1 È h2

c2 È … È hn
cn

} Frontier of a cut: the set of last event that happened in 
each prefix history

C = {ei
ci, i = 1,2, … n} 
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Consistent Cuts

p2

p1
1

1 2

2

3

43

4

Consistent cut Inconsistent cut

Definition: A cut C is consistent if for any event e in the cut,
if an event f �happened before� e, then f is also in the cut C

"e Î C (if f ® e then f Î C)
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How do we use global states?

} Need more definitions:

} Consistent global state: a global state that  
corresponds to a consistent cut

} Run: a total ordering of events in history H that is 
consistent with each process history hi�s ordering

} Linearization: a run consistent with happens-before 
relation in H; Linearizations pass through consistent 
global states

} Reachability: a global state Sk is reachable from global 
state Si, if there is a linearization, L, that passes through Si
and then through Sk.
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Global state predicates

} How do we use global states to reason about distributed 
systems?

} Global state predicate: a function from the set of global 
states to {TRUE, FALSE}

} Stable global state predicate: one that once it becomes 
true, it remains true in all future states reachable from 
that state.

} Examples:
} �the system is deadlocked�
} �all tokens in a token ring have disappeared�
} �the computation has finished�
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Safety and Liveness

} Safety: a condition that must hold in every finite prefix of 
a sequence (from an execution)

�nothing bad happens�
} Liveness: a condition that must hold a certain number of 

times 
�something good happens�
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Stable Global States and Safety

} Look for undesirable properties, �bad things�
} Assume that a �bad thing� BT (for example deadlock) is a 

global state predicate and S0 is the initial state of the 
system, then
�Safety with respect to BT� means 

"S reachable from S0, BT(S) = FALSE
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Stable Global States and Liveness 

} Look for desirable properties, �good things�
} Assume that a �good think� GT  (for example reaching 

termination) is a global-state-predicate and S0 is the initial 
state of the system then 
Liveness with respect to GT means:
For any linearization L starting at S0 $ state,SL reachable from S0
such that GT(SL) = TRUE
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4: Detecting Failures



Failure detectors as an abstraction 

} Failure detector: distributed oracle that makes guesses 
about process failures

} Accuracy: the failure detector makes no mistakes when 
labeling processes as faulty

} Completeness: the failure detector �eventually� (after 
some time) suspects every process that actually crashes

} Detectors classified based on their properties
} Used to solve different distributed systems problems
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Completeness

} Strong Completeness: There is a time after which every 
process that crashes is suspected by EVERY correct 
process. 

} Weak Completeness: There is a time after which every 
process that crashes is suspected by SOME correct 
process.
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Accuracy

} Strong Accuracy: No process is suspected before it 
crashes.

} Weak Accuracy: Some correct process is never 
suspected. (at least one correct process is never 
suspected)

} Eventual Strong Accuracy: There is a time after which 
correct processes are not suspected by any correct 
process.

} Eventual Weak Accuracy: There is a time after which 
some correct process is never suspected by any correct 
process.
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Perfect failure detector

} A perfect failure detector has strong accuracy and strong 
completeness

} THIS IS AN ABSTRACTION
} IT IS IMPOSSIBLE TO HAVE A PERFECT FAILURE 

DETECTOR
} We have to live with … unreliable failures detectors…
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Unreliable failure detectors

} Unreliable failure detectors can make mistakes !!!
} A process is suspected that it was faulty, that can be true 

or false, if false the list of alive processes is modified.
} Failure detectors can add/remove processes from the list 

of suspects; different processes have different lists.
} The assumptions are that:

} After a while the network becomes stable so the failure 
detector does not make mistakes anymore.

} In the unstable period, the failure detector can make mistakes.
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Failure detection implementation

} Push: processes keep sending heartbeats �I am alive� to 
the monitor. If no message is received for awhile from 
some process, that process is suspected as being dead 
(faulty). 

} Pull:  monitor asks the processes �Are you alive?�, and 
process will respond �Yes, I am alive�. If no answer is 
received from some process, the process is suspected as 
being dead (faulty).

} What are advantages and disadvantages of these two 
approaches?

Ordering. Global states. Failures.60



Failure detectors implementation (2)

} Every process must know about who failed
} How to disseminate the information
} How about if not every node can communicate directly 

with another node?
} Centralized 
} All-to-All
} Gossip based: provides probabilistic guarantees
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Metrics for failure detectors

} Detection time
} Mistake recurrence time
} Mistake duration
} Average mistake rate
} Query accuracy probability
} Good period duration
} Network load
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Summary

} Ordering events with logical clocks 
} Lamport clocks uses a single clock per process,
} Vector clocks – each process maintains a clock for all the 

other processes

} Determining global states
} Chandi-Lampprt algorithm for asynchronous systems, no 

failures and communication FIFO unidirectional.

} Detecting failures
} There are no perfect failure detectors, both accurate and 

complete; push or pull methods
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