
Cristina Nita-Rotaru

7610: Distributed Systems

Physical and logical clocks. Global states. Failure detection.

Ordering events in distributed systems

} Time is essential for ordering events in a distributed
system
} Physical time: local clock; global clock
} Logical time: Lamport clocks, vector clocks

Ordering. Global states. Failures.2

1: Physical Clocks

Historical clocks

} Humans used a variety of devices to
measure time
} Sundials
} Astronomical clocks
} Candle clocks
} Hourglasses

} Mechanical clocks developed in
medieval ages
} Typically maintained by monks (church bell

tower)

Ordering. Global states. Failures.4

Electrical clocks

} First developed in 1920s
} Uses carefully shaped quartz crystal
} Pass current, counts oscillations

} Most oscillate at 32,768/sec
} Easy to count in hardware
} Small enough to fit (~4mm)

} Typical quartz clock quite accurate
} Within 15 sec/30 days (6e-6)
} Can achieve 1e-7 accuracy in controlled

conditions
} Not good enough for today’s applications

Ordering. Global states. Failures.5

Atomic clocks

} Based on atomic physics
} Cool atoms to near absolute zero
} Bombard them with microwaves
} Count transitions between energy levels

} Most accurate timekeeping devices
} Accurate to within 10-9 seconds per day
} E.g., loses 1 second in 30 million years

} Standard International second defined
in terms of atomic oscillations
} 9,192,631,770 transitions of cesium-133

atom

Ordering. Global states. Failures.6

GMT, UT1, and UTC

} GMT: Greenwich Mean Time
} Originally, mean solar time at 0º longitude
} This isn’t really “noon” due to Earth’s axial tilt

} UT1: Universal Time
} Modernized version of GMT
} Based on rotation of Earth, ~86,400 seconds/day

} UTC: Universal Coordinated Time
} UT1 + leap seconds
} Minutes can have 59-61 seconds
} Since 1972, 25 leap seconds have been introduced

Ordering. Global states. Failures.8

7

International Atomic Time

8
} Atomic clocks used to define a number of time standards
} TAI: International Atomic Time

} Avg. of 200 atomic clocks, corrected for time dilation

} Essentially, a count of the number of seconds passed

} Count was 0 on Jan. 1, 1958
} UTC: since January 1, 1972, it has been defined to follow

TAI with an exact offset of an integer number of seconds,
changing only when a leap second is added to keep clock
time synchronized with the rotation of the Earth.

Ordering. Global states. Failures.9

Using real clocks to order events

} Each event will carry a timestamp
} Global clock: processes have access to a central global

clock
} The global clock gives global ordering of events

} Local clock: each process has its own clock
} What if the clocks are not synchronized
} What if events happened at the same time?

Ordering. Global states. Failures.9

Clocks in computers

} Real-time clock: CMOS clock (counter) circuit driven
by a quartz oscillator with battery backup to continue
measuring time when power is off

} OS generally programs a timer circuit to generate an
interrupt periodically
} e.g., 60, 100, 250, 1000 interrupts per second

(Linux 2.6+ adjustable up to 1000 Hz)
} Programmable Interval Timer (PIT) – Intel 8253, 8254
} Interrupt service procedure adds 1 to a counter in memory

} Quartz oscillators oscillate at slightly different
frequencies, clocks do not agree in general !!!

Ordering. Global states. Failures.10

What does it mean for a clock to be correct?

} Relative to an “ideal” clock
} Clock skew is magnitude
} Clock drift is difference in rates

} Say clock is correct within p if

(1-p)(t’-t) ≤ H(t’) - H(t) ≤ (1+p)(t’-t)

} (t’-t) True length of interval
} H(t’) - H(t) Measured length of interval
} (1-p)(t’-t) Smallest acceptable measurement
} (1+p)(t’-t) Largest acceptable measurement

} Monotonic property: t < t’ ⇒ H(t) < H(t’)

11 Ordering. Global states. Failures.

Monotonicity

} If a clock is running “slow” relative to real time
} Can simply re-set the clock to real time
} Doesn’t break monotonicity

} But, if a clock is running “fast”, what to do?
} Re-setting the clock back breaks monotonicity
} Imagine programming with the same time occurring twice

} Instead, “slow down” clock
} Maintains monotonicity

12 Ordering. Global states. Failures.

Cristian�s Algorithm

} Assumes a time server has
the accurate time and a
client synchronizes with
} Client asks the time server

for time
} Server sends its time Tserver

} Client estimates how long it
takes to receive answer from
server as RTT/2 where:

} RTT = (Tclient_receive – Tclient_send)

} Client adjusts its clock
Tclient = Tserver + (RTT / 2)

Ordering. Global states. Failures.13

Time?

T_se
rver

RTT
Sample

Client Server

Cristian�s Algorithm accuracy

} Assumes that it takes the same amount of time to send
the request and receive the answer

} Minimum time to transmit a message one-way: min
} Time to receive the server�s message is [min, RTT – min]
} Time at client [Tserver + min, Tserver + RTT – min]

accuracy is �(RTT /2 - min)

Ordering. Global states. Failures.14

Berkeley Algorithm

} Assumes no machine has an accurate time source; uses an
elected master to synchronize

} Master coordinates:
} Queries all clients for their local time
} Estimates the clients� local time (similar to Cristian�s

Algorithm)
} Averages all times including its own, excluding the ones that

are too drifted
} Tells each client the offset with each they need to adjust

} Some systems use multiple time servers
} Time is more accurate, but still drifts

Ordering. Global states. Failures.15

Network Time Protocol (NTP)

} NTP is a distributed service that
} Keeps machines synchronized to UTC
} Deals with lengthy losses of connectivity
} Enables clients to synchronized frequently (scalable)
} Avoids security attacks

} NTP deployed widely today
} Uses 64-bit value, epoch is 1/1/1900 (rollover in 2036)
} LANs: Precision to 1ms
} Internet: Precision to 10s of ms
} NTP pool is a dynamic collection of computers that

volunteer to provide time via the NTP, about 4000 servers

16 Ordering. Global states. Failures.

NTP Hierarchy

} Based on hierarchy of accuracy, called
strata
} Stratum 0: High-precision atomic clocks
} Stratum 1: Hosts directly connected to

atomic clocks
} Stratum 2: Hosts that run NTP with

stratum 1 hosts
} Stratum 3: Hosts that run NTP with

stratum 2 hosts
} …

} Stratum x hosts often synch with other
stratum x hosts
} Provides redundancy

17 Ordering. Global states. Failures.

Reference clocks

} Many NTP servers synchronize directly to UTC using
specialized equipment
} Atomic clocks: Ultimately are the root source of time in

NTP
} Global Positioning System (GPS): can synchronize with a

satellite’s atomic clock
} Code Division Multiple Access (CDMA): can synchronize

with a local wireless provider (who in turn most likely
synchronizes using GPS)

} Radio signals: similar to CDMA, can synchronize with
time/frequency radio stations

Ordering. Global states. Failures.18

NTP
server

client
T1

T2 T3

T4

On-the-wire protocol

} Client initiates request by recording timestamp T1, placing in
packet, then sending to NTP server

} NTP Server records timestamp T2 when receiving request
packet (and can do other processing if needed)

} When ready to send a reply, the NTP server records
timestamp T3, places T1, T2, T3 in reply and sends back to
client

} Client receives reply and records timestamp T4

T
1

T
1
T
2
T
3

Ordering. Global states. Failures.19

Updating the clock

} Client calculates offset between his clock and server�s
clock, and updates his clock by that amount

} To synchronize exactly, client needs to know one-way
delay between server and client
} This is difficult in practice to ascertain, so NTP assumes path is

symmetrical and one-way delay is half of round trip time
} Offset is calculated to be: ½ [(T2 - T1) + (T3 - T4)]

Ordering. Global states. Failures.20

NTP in practice

} Run on UDP port 123
} Most Internet hosts support NTP

} Accuracy on general Internet is ~10ms
} Up to 1ms on local networks, ideal conditions

} Many networks run local NTP servers
} E.g., time.ccs.neu.edu

} NTP has recently been a vector for DDoS attacks
} Best practice is for servers to filter requests outside local

network

21 Ordering. Global states. Failures.

2: Logical Clocks

From physical clocks to logical clocks

} Synchronized clocks are great if we have them
} Why do we need the time anyway?
} In distributed systems we care about �what happened

before what�

} Message-based systems, two type of events
} Send a message
} Receive a message

Ordering. Global states. Failures.23

``HAPPENED BEFORE’’ ®

} If events a and b take place at the same process and a
occurs before b (physical time) then we have a ® b

} If a is a send event of message m at p1 and b is a deliver
event of the same m at p2, p1 ≠ p2 then a ® b

} If a ® b and b ® c then a ® c

p2

p3

p1

p4

Ordering. Global states. Failures.24

Reminder: Partial and Total Order

} Definition: A relation R over a set S is a partial order iff
for each a, b, and c in S:
} aRa (reflexive).
} aRb Ù bRa Þ a = b (antisymmetric).
} aRb Ù bRc Þ aRc (transitive).

} Definition: A relation R over a set S is total order if for
each distinct a and b in S, R is antisymmetric, transitive
and either aRb or bRa (completeness).

Ordering. Global states. Failures.25

Logical Clocks: Lamport Clocks

} Each process maintains his own clock Ci (a counter)
} Clock Condition: for any events a and b in process pi

if a ® b then Ci(a) < Ci(b)

} Implementation:
} each process pi increments Ci between any successive events
} on sending a message m, attach to the message local clock

Tm = Ci(a)

} on receiving of message m process pk sets Ck to
Ck = max(Ck ,Tm) + 1

Ordering. Global states. Failures.26

Lamport Clocks: Example

p1

p2

p3

1

2 3 6 7 8

4 5 6 9

8
7

Ordering. Global states. Failures.27

Lamport Clocks: Total Order

} Logical Clocks only provide partial order
} Create Total Order by breaking the ties
} Example to break ties, use process identifiers, have an

order on process identifiers:
} If a is event in pi and b is event in pj then

a ® b iff
} Ci(a) < Cj(b) or
} Ci(a) = Cj(b) and pi < pj

Ordering. Global states. Failures.28

Concurrent events

} Concurrent events:
If a ®b and b ®a then a and b are concurrent

} Logical clocks assign order to events that are causally
independent, in other words events that are causally
independent appear as if they happened in a certain order

} For some applications (e.g. debugging) it is important to
capture independence

Ordering. Global states. Failures.29

Vector Clocks

} Independently developed by Colin Fidge and Friedemann
Mattern in 1988.

} Each process pi maintains a vector Ci

Ci = [0, 0, ..., 0].
} When pi executes an event, it increments its own clock Ci[i]
} When pi sends a message m to pj, it attaches its vector Ci on m.
} When pi receives a message m, increments its own clock and

updates the clock for the other processes as follows
" j: 1 £ j £ n, j ¹ i: Ci[j] = max(Ci[j], m.C[j])
Ci[i] = Ci[i] + 1.

Ordering. Global states. Failures.30

Vector Clocks: Example

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

M1[010]

M2[210]
M6[512]

M3[212] M4[213]

M5[412]

Ordering. Global states. Failures.31

How to Order with Vector Clocks

} Given two events a and b, a ® b if and only if

} V(a) is less than or equal to V(b) for all process indices,
and at least one of those relationships is strictly smaller.

} Otherwise, we say they are concurrent or independent ||

} a ® b º " i: 1 £ i £ n: V(a)[i] £V(b)[i]
Ù $ i: 1 £ i £ n: V(a)[i] < V(b)[i]

} a || b º $ i: 1 £ i £ n: V(a)[i] < V(b)[i]
Ù $ j: 1 £ j £ n: V(b)[j] < V(a)[j]

Ordering. Global states. Failures.32

What Events Are Independent?

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

m1

m2
m6

m3
m4

m5

Ordering. Global states. Failures.33

3: Global states and Chandi-Lamport Snapshot
Algorithm.

Why do we need global snapshots?

} Global snaphot gives you the “global view” of the system
Examples of applications where global snapshots are
useful:
} Checkpointing: save the state and restart the distributed

application after a failure
} Garbage collection of objects: objects at servers that don’t

have any other objects (at any servers) with pointers to
them

} Deadlock detection: debugging for database transaction
systems

} Termination of computation: useful for batch computing
systems

35 Ordering. Global states. Failures.

Recording global snapshots

} If synchronized clocks are available, each
process records its state at a known time t
} How to obtain the state of the messages that

transit the channels?

} If synchronized clocks are not available?
} How to determine when a process takes its

snapshot?
} How to distinguish between the messages to

be recorded in the snapshot from those not to
be recorded?

Ordering. Global states. Failures.36

Chandy-Lamport Algorithm: Model

} System model:
} No failures and all messages arrive intact and only once
} Communication channels are unidirectional and FIFO ordered
} There is a communication path between any two processes

} Other assumptions
} Any process may initiate the snapshot algorithm
} The snapshot algorithm does not interfere with the normal

execution of the processes
} Each process records its local state and the state of its incoming

channels

Ordering. Global states. Failures.37

Records a consistent global state of an
asynchronous system.

Chandy-Lamport Algorithm

} A process needs to know
} When to start recording (in case it was not the one that

initiated the algorithm)
} What messages to include in the snapshot
} When did all the other processes recorded their snapshot

} Key design: uses a control message, marker
} to separate messages between those to be included in the

snapshot from those not to be recorded in the snapshot.
} To inform other processed that it has recorded its snapshot
} To inform other processed to start recording: A process must

record its snapshot no later than when it receives a marker on
any of its incoming channels.

Ordering. Global states. Failures.38

Chandy-Lamport Algorithm

} Can be initiated by any process by executing the �Marker
Sending Rule�

} A process executes the �Marker Receiving Rule� on
receiving a marker.
} If the process has not yet recorded its local state, it records

the state of the channel on which the marker is received as
empty and executes the �Marker Sending Rule� to record its
local state.

} The algorithm terminates after each process has received
a marker on all of its incoming channels.

} All the local snapshots get disseminated to all other processes
and all the processes can determine the global state.

Ordering. Global states. Failures.39

Chandy/Lamport Snapshot Algorithm

} Marker-sending rule for a process p:
} Saves its own local state
} Sends a marker to all other processes on their corresponding

channels before sending any other message

} Marker-receiving rule for a process q on channel c
} If q has not recorded its state then

} q records its state
} q record the state of incoming channel c as �empty�
} turn on recording of messages over other incoming channels
} for each outgoing channel c, send a marker on c

} else
} q records the state of incoming channel c as all the messages received

over c after q recorded its state and before q received the marker
along c Ordering. Global states. Failures.40

Example of Chandy-Lamport Algorithm

Ordering. Global states. Failures.41

} Three processes p, q and r. Communication channels, c1
(p to q), c2 (q to p), c3 (q to r), and c4 (r to p).They all
start with state = $500 and the channels are empty. The
stable property is that the total amount of money is
$1500.

} Process p sends $10 to q and then starts the snapshot
algorithm: records its current state 490 and sends out a
marker on c1.

} Meanwhile q has sent $20 to p along c2 and 10 to r along
c3.

Ordering. Global states. Failures.42

Ordering. Global states. Failures.43

Ordering. Global states. Failures.44

Correctness for Chandi-Lamport

} How do we define correctness in this case?
} Records a consistent global state of an asynchronous

system.
} We need some definitions

Introduction45

History of events

} Given a process pi

} Event ei
j is the event j at process i

} History of process pi, hi is a sequence of events that
happened at pi

hi = <ei
0, ei

1, … >
} Prefix history at pi up to k, is the history of pi up to the

kth event
hi

k = <ei
0, ei

1, …,ei
k >

} State Si
k is the state of process pi immediately before the

kth event

Ordering. Global states. Failures.46

History of events: More definitions

} Given a set of processes
} Global history: the set of all processes� histories

} H = Èi (hi)

} Global state: the set of states at each process
S = Èi (Si

ki)
} Cut: a set of prefix histories

C Í H = h1
c1 È h2

c2 È … È hn
cn

} Frontier of a cut: the set of last event that happened in
each prefix history

C = {ei
ci, i = 1,2, … n}

Ordering. Global states. Failures.47

Consistent Cuts

p2

p1
1

1 2

2

3

43

4

Consistent cut Inconsistent cut

Definition: A cut C is consistent if for any event e in the cut,
if an event f �happened before� e, then f is also in the cut C

"e Î C (if f ® e then f Î C)

Ordering. Global states. Failures.48

How do we use global states?

} Need more definitions:

} Consistent global state: a global state that
corresponds to a consistent cut

} Run: a total ordering of events in history H that is
consistent with each process history hi�s ordering

} Linearization: a run consistent with happens-before
relation in H; Linearizations pass through consistent
global states

} Reachability: a global state Sk is reachable from global
state Si, if there is a linearization, L, that passes through Si
and then through Sk.

Ordering. Global states. Failures.49

Global state predicates

} How do we use global states to reason about distributed
systems?

} Global state predicate: a function from the set of global
states to {TRUE, FALSE}

} Stable global state predicate: one that once it becomes
true, it remains true in all future states reachable from
that state.

} Examples:
} �the system is deadlocked�
} �all tokens in a token ring have disappeared�
} �the computation has finished�

Ordering. Global states. Failures.50

Safety and Liveness

} Safety: a condition that must hold in every finite prefix of
a sequence (from an execution)

�nothing bad happens�
} Liveness: a condition that must hold a certain number of

times
�something good happens�

Ordering. Global states. Failures.51

Stable Global States and Safety

} Look for undesirable properties, �bad things�
} Assume that a �bad thing� BT (for example deadlock) is a

global state predicate and S0 is the initial state of the
system, then
�Safety with respect to BT� means

"S reachable from S0, BT(S) = FALSE

Ordering. Global states. Failures.52

Stable Global States and Liveness

} Look for desirable properties, �good things�
} Assume that a �good think� GT (for example reaching

termination) is a global-state-predicate and S0 is the initial
state of the system then
Liveness with respect to GT means:
For any linearization L starting at S0 $ state,SL reachable from S0
such that GT(SL) = TRUE

Ordering. Global states. Failures.53

4: Detecting Failures

Failure detectors as an abstraction

} Failure detector: distributed oracle that makes guesses
about process failures

} Accuracy: the failure detector makes no mistakes when
labeling processes as faulty

} Completeness: the failure detector �eventually� (after
some time) suspects every process that actually crashes

} Detectors classified based on their properties
} Used to solve different distributed systems problems

Ordering. Global states. Failures.55

Completeness

} Strong Completeness: There is a time after which every
process that crashes is suspected by EVERY correct
process.

} Weak Completeness: There is a time after which every
process that crashes is suspected by SOME correct
process.

Ordering. Global states. Failures.56

Accuracy

} Strong Accuracy: No process is suspected before it
crashes.

} Weak Accuracy: Some correct process is never
suspected. (at least one correct process is never
suspected)

} Eventual Strong Accuracy: There is a time after which
correct processes are not suspected by any correct
process.

} Eventual Weak Accuracy: There is a time after which
some correct process is never suspected by any correct
process.

Ordering. Global states. Failures.57

Perfect failure detector

} A perfect failure detector has strong accuracy and strong
completeness

} THIS IS AN ABSTRACTION
} IT IS IMPOSSIBLE TO HAVE A PERFECT FAILURE

DETECTOR
} We have to live with … unreliable failures detectors…

Ordering. Global states. Failures.58

Unreliable failure detectors

} Unreliable failure detectors can make mistakes !!!
} A process is suspected that it was faulty, that can be true

or false, if false the list of alive processes is modified.
} Failure detectors can add/remove processes from the list

of suspects; different processes have different lists.
} The assumptions are that:

} After a while the network becomes stable so the failure
detector does not make mistakes anymore.

} In the unstable period, the failure detector can make mistakes.

Ordering. Global states. Failures.59

Failure detection implementation

} Push: processes keep sending heartbeats �I am alive� to
the monitor. If no message is received for awhile from
some process, that process is suspected as being dead
(faulty).

} Pull: monitor asks the processes �Are you alive?�, and
process will respond �Yes, I am alive�. If no answer is
received from some process, the process is suspected as
being dead (faulty).

} What are advantages and disadvantages of these two
approaches?

Ordering. Global states. Failures.60

Failure detectors implementation (2)

} Every process must know about who failed
} How to disseminate the information
} How about if not every node can communicate directly

with another node?
} Centralized
} All-to-All
} Gossip based: provides probabilistic guarantees

Ordering. Global states. Failures.61

Metrics for failure detectors

} Detection time
} Mistake recurrence time
} Mistake duration
} Average mistake rate
} Query accuracy probability
} Good period duration
} Network load

Ordering. Global states. Failures.62

Summary

} Ordering events with logical clocks
} Lamport clocks uses a single clock per process,
} Vector clocks – each process maintains a clock for all the

other processes

} Determining global states
} Chandi-Lampprt algorithm for asynchronous systems, no

failures and communication FIFO unidirectional.

} Detecting failures
} There are no perfect failure detectors, both accurate and

complete; push or pull methods

Ordering. Global states. Failures.63

Reading for this lecture

} L. Lamport for "Time, Clocks, and the Ordering of Events in a
Distributed System," Communications of the ACM, July 1978,
21(7):558-565. E.W. Dijkstra Prize 2000, SIGOPS Hall of Fame.

} Mattern, F. "Virtual Time and Global States of Distributed
Systems", in Cosnard, M., Proc. Workshop on Parallel and
Distributed Algorithms, Chateau de Bonas, France: Elsevier,
pp. 215–226, 1988

} K. M. Chandy and L. Lamport, Distributed Snapshots:
Determining Global States of Distributed Systems. ACM
Transactions on Computer Systems, Vol. 3, No. 1, February,
1985, pp. 63-75. SIGOPS Hall of Fame.

} T. Chandra and S. Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems, 1996.

Introduction64

