Cristina Nita-Rotaru

CS355: Cryptography

Lecture 16: Digital Signatures.

Where Does This Fit?

	Secret Key Setting	Public Key Setting
Secrecy / Confidentiality	Stream cipher Block cipher + encryption modes	Public key encryption: RSA, El Gamal, etc.
Authenticity / Integrity	MAC	Digital Signatures

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts, they are valid if they are signed.
- Can we have a similar service in the electronic world?

Digital Signatures

- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) verification key, a message, and a signature
- Provides:
 - Authentication
 - Data integrity
 - Non-Repudiation (MAC does not provide this.)

Adversarial Goals

- Total break: adversary is able to find the secret for signing, so he can forge then any signature on any message.
- Selective forgery: adversary is able to create valid signatures on a message chosen by someone else, with a significant probability.
- Existential forgery: adversary can create a pair (message, signature), s.t. the signature of the message is valid.
- A signature scheme can not be perfectly secure; it can only be computationally secure.
- Given enough time and adversary can always forge Alice's signature on any message.

Attack Models for Digital Signatures

- Key-only attack: Adversary knows only the verification function (which is supposed to be public).
- Known message attack: Adversary knows a list of messages previously signed by Alice.
- Chosen message attack: Adversary can choose what messages wants Alice to sign, and he knows both the messages and the corresponding signatures.

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Pre-image resistant
 - Weak collision resistant
 - Strong collision resistant

RSA Signatures

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\Phi = (q 1)(p 1)$
- Select a random integer e, 1 < e < Φ, s.t. gcd(e, Φ) = 1
- Compute d, $1 < d < \Phi$ s.t. $ed \equiv 1 \mod \Phi$

```
Public key: (e, n)
Secret key: d,
```

RSA Signatures (cont.)

Signing message M

- Verify 0 < M < n</p>
- Compute S = M^d mod n

Verifying signature S

- Use public key (e, n)
- Compute S^e mod n = (M^d mod n)^e mod n = M

Note: in practice, a hash of the message is signed and not the message itself.

RSA Signatures (cont.)

Example of forging

 Attack based on the multiplicative property of property of RSA.

 $y_1 = sig_K(x_1) = x_1^d \mod n$ $y_2 = sig_K(x_2) = x_2^d \mod n$, then $ver_K(x_1x_2 \mod n, y_1y_2 \mod n) = true$ $Sign(x_1x_2) = (x_1x_2)^d \mod n = (x_1)^d \mod n (x_2)^d \mod n = y_1y_2$

So adversary can create the valid signature

 y_1y_2 mod n on the message x_1x_2 mod n

This is an existential forgery using a known message attack.

El Gamal Signature

Key Generation (as in ElGamal encryption)

- Generate a large random prime *p* such that DLP is infeasible in Z_p and a generator g of the multiplicative group Z_p of the integers modulo *p*
- Select a random integer a, $1 \le a \le p-2$, and compute

 $\beta = g^a \mod p$

- Public key is (p; g; β)
- Private key is a.
- Recommended sizes: 1024 bits for p and 160 bits for a.

ElGamal Signature (cont.)

Signing message M

▶ Select random k, $1 \le k \le p-2$, $k \in Z_{p-1}^*$

Compute

r = g^k mod p

s = k⁻¹(h(M) - ar) mod (p-1)

- Signature is: (r,s)
- Size of signature is double size of p

NOTE: h is a hash function

ElGamal Signature (cont.)

Signature is: (r, s) r = g^k mod p s = k⁻¹(h(M) - ar) mod (p-1)

Verification

- Verify that r is in Z_{p-1}^* : $1 \le r \le p-1$
- Compute
 - $v_1 = \beta^r r^s \mod p$
 - $v_2 = g^{h(M)} \mod p$
- Accept iff v₁=v₂

ElGamal Signature (Continued)

- 0 < r < p must be checked, otherwise easy to forge a signature on any message if a valid signature is available.
 - given M, and r=g^k, s=k⁻¹(h(M) ar) mod (p-1)
 - for any message M', let u=h(M') / h(M) mod (p-1)
 - computes s'=su mod (p-1) and r' s.t. r'≡ru (mod (p-1)) AND r'≡r (mod p), then

$$\beta^{r'} r'^{s'} = \beta^{ru} r^{su} = (\beta^r r^s)^u = (g^{h(M)})^u = g^{h(M')}$$

Digital Signature Algorithm (DSA)

Specified as FIPS 186

Key generation

- Select a prime q of 160-bits
- Choose $0 \le t \le 8$
- Select $2^{511+64t} with <math>q | p-1$
- Let α be a generator of Z_p^* , and set $g = \alpha^{(p-1)/q} \mod p$
- Select $1 \le a \le q-1$
- Compute $\beta = g^a \mod p$

Public key: (p, q, g, β) Private key: a

DSA

Signing message M:

- Select a random integer k, 0 < k < q</p>
- Compute

k-1 mod q

r = (g^k mod p) mod q

s = k⁻¹ (h(M) + ar) mod q

Signature: (r, s)

Note: FIPS recommends the use of SHA-1 as hash function.

Signature: (r, s) r = (g^k mod p) mod q s = k⁻¹ (h(M) + ar) mod q

Verification

- Verify 0 < r < q and 0 < s < q, if not, invalid</p>
- Compute

$$u_1 = h(M)s^{-1} \mod q,$$

 $u_2 = rs^{-1} \mod q$
Valid iff $r = (g^{u_1} \beta^{u_2} \mod p) \mod q$
 $g^{u_1} \beta^{u_2} = g^{h(M)s^{-1}} g^{ars^{-1}} = g^{(h(M)+ar)s^{-1}} = g^k \pmod{p}$

Schnorr Signature

Key generation (as in DSA, h: $\{0,1\}^* \rightarrow Z_q$)

- Select a prime q
- Select $1 \le a \le q-1$
- Compute $y = \alpha^a \mod p$

Public key: (p,q, α,y) Private key: a Schnorr Signature

Signing message M

- Select random secret k, 1 ≤ k ≤ q-1
- Compute

r = α^k mod p, e = h(M || r) s = ae + k mod q

Signature is: (s, e)

Cristina Nita-Rotaru

Schnorr Signature

```
Signature: (s, e)
e = h(M || r)
s = ae + k \mod q
```

Verification

Compute

 $v = \alpha^{s} y^{-e} \mod p$, e' = h(m || v) Valid iff e' = e

Cristina Nita-Rotaru

20

One-Time Digital Signatures

- One-time digital signatures: digital schemes used to sign, at most one message; otherwise signature can be forged.
- A new public key is required for each signed message.
- Advantage: signature generation and verification are very efficient and is useful for chipcards, where low computation complexity is required.

Lamport One-time Signature

To sign one bit:

- Choose as secret keys x₁, x₂
 - x₁ represents '0'
 - x₂ represents '1'
- public key:

•
$$y_1 = h(x_1)$$
,

$$y_2 = h(x_2).$$

 Signature is h(x₁) if the message is x₁ or h(x₂) for x₂

Summary

- Digital signatures consist of a private algorithm and a public verifying algorithm
- Main difference between digital signatures and HMAC is non-repudiation

