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CS355: Cryptography 

Lecture 16: Digital Signatures. 
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Digital Signatures: The Problem 

}  Consider the real-life example 
where a person pays by credit card 
and signs a bill; the seller verifies 
that the signature on the bill is the 
same with the signature on the card 

}  Contracts, they are valid if they are 
signed. 

}  Can we have a similar service in 
the electronic world?  
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Digital Signatures 

}  Digital Signature: a data string which associates 
a message with some originating entity. 

}  Digital Signature Scheme: 
}  a signing algorithm: takes a message and a (private) 

signing key, outputs a signature 
}  a verification algorithm: takes a (public) verification 

key, a message, and a signature 
}  Provides: 

}  Authentication 
}  Data integrity 
}  Non-Repudiation (MAC does not provide this.) 
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}  Total break: adversary is able to find the secret for 
signing, so he can forge then any signature on any 
message.  

}  Selective forgery: adversary is able to create valid 
signatures on a message chosen by someone else, with 
a significant probability. 

}  Existential forgery: adversary can create a pair 
(message, signature), s.t. the signature of the message 
is valid.  

}  A signature scheme can not be perfectly secure; it can 
only be computationally secure. 

}  Given enough time and adversary can always forge 
Alice’s signature on any message. 

Adversarial Goals 
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Attack Models for Digital Signatures 

}  Key-only attack: Adversary knows 
only the verification function (which is 
supposed to be public). 

}  Known message attack: Adversary 
knows a list of messages previously 
signed by Alice. 

}  Chosen message attack: Adversary 
can choose what messages wants 
Alice to sign, and he knows both the 
messages and the corresponding 
signatures. 
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Digital Signatures and Hash  

}  Very often digital signatures are 
used with hash functions, hash 
of a message is signed, instead 
of the message. 

}  Hash function must be: 
}  Pre-image resistant 
}  Weak collision resistant 
}  Strong collision resistant  
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RSA Signatures 

Key generation (as in RSA encryption): 
}  Select 2 large prime numbers of about the  
    same size, p and q 
}  Compute n = pq, and Φ = (q - 1)(p - 1) 
}  Select a random integer e,  1 < e < Φ, s.t.  
    gcd(e, Φ) = 1 
}  Compute  d, 1 <  d <  Φ s.t.  ed ≡ 1 mod Φ 
 
Public key:  (e, n) 
Secret key:  d,  
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RSA Signatures (cont.)  

Signing message M 
}  Verify 0 < M < n 
}  Compute S = Md mod n 
 
Verifying signature S 
}  Use public key (e, n)  
}  Compute Se mod n = (Md mod n)e mod n = M 
 
Note: in practice, a hash of the message is signed 
and not the message itself. 
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RSA Signatures (cont.)  
Example of forging 
}  Attack based on the multiplicative property of property of 

RSA. 
  y1 = sigK(x1) = x1

d mod n 
  y2 = sigK(x2) = x2

d mod n, then 
  verK(x1x2 mod n, y1y2 mod n) = true 

Sign(x1x2) = (x1x2)d mod n = (x1)d mod n (x2)d mod n = y1y2 
 
}  So adversary can create the valid signature   
              y1y2 mod n on the message x1x2 mod n 
}  This is an existential forgery using a known message 

attack. 
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El Gamal Signature 
Key Generation (as in ElGamal encryption)  
}  Generate a large random prime p such that DLP is 

infeasible in Zp and a generator g of the multiplicative 
group Zp of the integers modulo p 

}  Select a random integer a, 1 ≤ a ≤ p-2, and compute  
         β = ga mod p 
}  Public key is (p; g ; β) 
}  Private key is a. 

}  Recommended sizes: 1024 bits for p and 160 bits for 
a. 
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ElGamal Signature (cont.)  
Signing message M 
}  Select random k, 1 ≤ k ≤ p-2, k ∈ Zp-1

* 
}  Compute  

  r = gk mod p 
  s = k-1( h(M) - ar ) mod (p-1) 

}  Signature is: (r,s) 
}  Size of signature is double size of p 
 
 
NOTE: h is a hash function 
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ElGamal Signature (cont.) 

Verification 
}  Verify that r is in Zp-1

* : 1 ≤ r ≤ p-1 
}  Compute  

 v1 = βr rs   mod p 
 v2 = gh(M) mod p 

}  Accept iff v1=v2 

Signature is: (r, s) 
r = gk mod p 

s = k-1( h(M) - ar ) mod (p-1) 
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ElGamal Signature (Continued) 
}  0 < r < p must be checked, otherwise easy to forge a 

signature on any message if a valid signature is 
available. 
}  given M, and r=gk, s=k-1( h(M) - ar ) mod (p-1) 
}  for any message M’, let u=h(M’) / h(M) mod (p-1) 
}  computes s’=su mod (p-1) and r’ s.t. 
     r’≡ru (mod (p-1))   AND   r’≡r (mod p), then    
βr’ r’s’ = βru rsu = (βr rs)u = (gh(M))u= gh(M’) 
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Digital Signature Algorithm (DSA) 
Specified as FIPS 186 
 
Key generation 
}  Select a prime q of 160-bits 
}  Choose 0 ≤ t ≤ 8 
}  Select 2511+64t < p < 2512+64t  with q | p-1 
}  Let α be a generator of Zp

*, and set  
 g = α(p-1)/q mod p 

}  Select 1 ≤ a ≤ q-1 
}  Compute β = ga mod p 
 
Public key: (p, q, g, β) 
Private key: a 
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DSA 
Signing message M: 
}  Select a random integer k, 0 < k < q 
}  Compute  

k-1 mod q 
  r = (gk mod p) mod q 
  s = k-1 ( h(M) + ar) mod q 

}  Signature: (r, s) 

Note: FIPS recommends  
the use of SHA-1 as hash function. 



Cristina Nita-Rotaru 17 

DSA 

Verification 
}  Verify 0 < r < q and 0 < s < q, if not, invalid 
}  Compute  

  u1 = h(M)s-1 mod q, 
    u2 =  rs-1 mod q 
}  Valid iff r  = (gu1 βu2 mod p) mod q   
  gu1 βu2 =gh(M)s-1 gars-1 = g(h(M)+ar)s -1 = gk  (mod p) 

Signature: (r, s) 
r = (gk mod p) mod q 
s = k-1 ( h(M) + ar) mod q 
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Schnorr Signature  

Key generation (as in DSA, h:{0,1}*→Zq) 
}  Select a prime q  
}  Select 1 ≤ a ≤ q-1 
}  Compute y = αa mod p 
 
Public key: (p,q, α,y) 
Private key: a 
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Schnorr Signature  

Signing message M 
}  Select random secret k, 1 ≤ k ≤ q-1 
}  Compute   

  r = αk mod p, 
   e = h(M || r) 

  s = ae + k mod q 
 
}  Signature is: (s, e) 
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Schnorr Signature  

Verification 
}  Compute  

   v  = αsy-e mod p,  
   eʹ′ = h(m || v) 

}  Valid iff eʹ′ = e 

Signature: (s, e) 
e = h(M || r) 
s = ae + k mod q 
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One-Time Digital Signatures 

}  One-time digital signatures: digital schemes 
used to sign,at most one message; otherwise 
signature can be forged.  

}  A new public key is required for each signed 
message. 

}  Advantage: signature generation and 
verification are very efficient and is useful for 
chipcards, where low computation complexity 
is required. 
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To sign one bit: 
}  Choose as secret keys x1, x2  

}  x1  represents ‘0’  
}  x2  represents ‘1’ 

}  public key:  
}  y1 = h(x1),  
}  y2 = h(x2). 

}  Signature is h(x1) if the 
message is x1 or h(x2) for x2 

Lamport One-time Signature  
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Summary 

}  Digital signatures consist of 
a private algorithm and a 
public verifying algorithm 

}  Main difference between 
digital signatures and HMAC 
is non-repudiation 


