
CS240: Programming in C

Lecture 8: Dynamic
memory allocation.

Cristina Nita-Rotaru Lecture 8/ Fall 2013 1

Memory layout for a process

l  The operating system creates a
process by assigning memory and
other resources"

l  Stack: keeps track of the point to which each active
subroutine should return control when it finishes
executing; stores variables that are local to
functions

l  Heap: dynamic memory for variables that are
created with malloc, calloc, realloc and
disposed of with free

l  Data: initialized variables including global and static
variables, un-initialized variables

l  Code: the program instructions to be executed

Cristina Nita-Rotaru Lecture 8/ Fall 2013 2

Stack

Heap

Code

Data

Virtual Memory

Variables

l  Global – accessible in all functions, they
get in ‘data memory’

l  Local – declared within functions, they
get allocated on the stack, they
‘disappear’ when the function returns

l  Dynamically allocated – they get
allocated on the heap, the user allocates
and de-allocates them

Cristina Nita-Rotaru Lecture 8/ Fall 2013 3

Dynamic memory management

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

Allocate and free dynamic memory

Cristina Nita-Rotaru Lecture 8/ Fall 2013 4

Operations with memory

void *memset(void *s, int c, size_t n);
void *memcpy(void *s1, const void *s2,
size_t n);

Initializing and copying blocks of memory.

Cristina Nita-Rotaru Lecture 8/ Fall 2013 5

void *malloc(size_t size);

l  Allocates size bytes and returns a pointer to the
allocated memory. The memory is not cleared. (Use
memset to zero it.)

l  The returned value is a pointer to the allocated
memory, suitable for any kind of variable, or NULL if
the request fails. You have to cast the pointer.

 p = (char*) malloc(10); /* allocated 10 bytes */

 if(p == NULL) {
 ….
 }

Cristina Nita-Rotaru Lecture 8/ Fall 2013 6

MALLOC CAN FAIL, YOU SHOULD CHECK THAT
THE RETURNED POINTER IS NOT NULL

void *calloc(size_t nmemb, size_t size);

l  Allocates memory for an array of nmemb elements
of size bytes each and returns a pointer to the
allocated memory. The memory is set to zero.

l  The value returned is a pointer to the allocated
memory, which is suitable for any kind of variable, or
NULL if the request fails.

 p = (char*) calloc(10,1); /* allocates 10 bytes */
 if(p == NULL) {
 ….
 }

Cristina Nita-Rotaru Lecture 8/ Fall 2013 7

CALLOC CAN FAIL, YOU SHOULD CHECK THAT THE
RETURNED POINTER IS NOT NULL

void free(void *ptr);

l  Frees the memory space pointed to by ptr, which
must have been allocated with a previous call to
malloc, calloc or realloc.

l  If memory was not allocated before, or if free(ptr)
has already been called before, undefined behavior
occurs. If ptr is NULL, no operation is performed.

l  free returns no value.

 char *mess = NULL;
 mess = (char*) malloc(100);
 ….
 free(mess);

Cristina Nita-Rotaru Lecture 8/ Fall 2013 8

FREE DOES NOT SET THE POINTER TO NULL

void *realloc(void *ptr, size_t size);

l  Changes the size of the memory block pointed to by ptr to

size bytes. The contents will be unchanged to the
minimum of the old and new sizes; newly allocated memory
will be uninitialized. Unless ptr is NULL, it must have been
returned by an earlier call to malloc, calloc or realloc.

l  If ptr is NULL, equivalent to malloc(size);
l  If size is equal to zero, equivalent to free(ptr).
l  Returns a pointer to the newly allocated memory, which is

suitable for any kind of variable and may be different from

ptr, or returns NULL if the request fails or if size was equal
to 0.

l  If fails the original block is left untouched, i.e. it is not freed or
moved.

Cristina Nita-Rotaru Lecture 8/ Fall 2013 9

void *memcpy(void *dest,const void *src,size_t n);

l  Copies n bytes from memory area src to memory area
dest. It returns dest.

l  The function operates as efficiently as possible on
memory areas. It does not check for overflow of any
receiving memory area.

char buf[100];
char src[20] = “Hi there!”;
int type = 9;

memcpy(buf, &type, sizeof(int)); /* copy an int */

memcpy(buf+sizeof(int), src, 10); /* now copy 10 chars */

Cristina Nita-Rotaru Lecture 8/ Fall 2013 10

void *memset(void *s, int c, size_t n);

l  Sets the first n bytes in memory area s to the value
of c (converted to an unsigned char). It returns s.

l  Operates as efficiently as possible on memory areas.
It does not check for overflow of any receiving
memory area.

 memset(message, 0, 100);

Cristina Nita-Rotaru Lecture 8/ Fall 2013 11

Memory Allocation Problems

1. Memory leaks
l  Dynamically allocated memory is not

freed appropriately.
l  If your program runs a long time

(service), it will ‘eat’ memory, so it
will slow down the system.

l  ALWAYS WRITE THE FREE WHEN
YOU WRITE THE MALLOC, decide
later where the `free’ call goes.

Cristina Nita-Rotaru Lecture 8/ Fall 2013 12

Memory Allocation Problems

Cristina Nita-Rotaru Lecture 8/ Fall 2013 13

2. Deallocation bugs
•  Deallocating something twice.
•  Deallocating something that was not

allocated, remember that if a pointer is
not NULL, free will try to free the
memory

•  Both can cause unexpected behavior.
For example, the next call to malloc will
fail (!! The next malloc can be in a
program while deallocating something
that was not allocated can be in a
library!!).

Memory Allocation Problems

3. Memory overrun
l  Write in memory that was not allocated.

The program will exit with segmentation
fault.

l  Overwrite memory: unexpected
behavior.

Cristina Nita-Rotaru Lecture 8/ Fall 2013 14

Dynamic memory: Checklist

l  Set your pointer to NULL
when you declare it

l  Verify that malloc succeeded
l  Initialize the allocated

memory
l  Write the free when you

write malloc
l  Set pointer to null after you

freed it

Cristina Nita-Rotaru Lecture 8/ Fall 2013 15

Readings and exercises for this lecture

K&R Chapter 5.10 for
command line
arguments

Cristina Nita-Rotaru Lecture 8/ Fall 2013 16

