
CS240: Programming in C

Lecture 18: Threads

Cristina Nita-Rotaru Lecture 18/ Fall 2013 1

Basic Computer Architecture

Cristina Nita-Rotaru Lecture 1/ Fall 2013 2

Memory

CPU
(ALU, registers, CU)

Storage

Mouse

Keyboard

Network

Display

Process

l  Each process has its own resources
and memory"

l  Resources:
§  Registers
§  Stack, heap, shared libraries, program

instructions
§  File descriptors

Cristina Nita-Rotaru Lecture 18/ Fall 2013 3

Stack

Heap

Code

Data

Virtual Memory

Threads vs Processes

l  Process:
§  an independent unit of execution isolated from all

other processes and shares no resources
§  can be created by other process (fork, exec)

l  Thread:
§  an independent unit of execution that shares

resources with other threads
§  exists within a process, but has independent

control flow
§  scheduled by the operating system
§  functions to work with threads – different

standards, e.g. POSIX

Cristina Nita-Rotaru Lecture 18/ Fall 2013 4

Threads

l  Share common process resources
(like heap and file descriptors)
§  changes made by one thread visible to others
§  pointers have meaning across threads
§  two threads can concurrently read and write to

the same memory location

l  Maintain their own stack pointer and
registers

l  Pending and blocked signals

Cristina Nita-Rotaru Lecture 18/ Fall 2013 5

Why Threads?

l  Concurrency
§  Expression of a task in the form of multiple,

possibly interacting subtasks, that may
potentially be executed at the same time.

§  It says nothing about how the subtasks are
actually executed.

§  Concurrent tasks may be executed serially or
in parallel depending upon the underlying
physical resources available.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 6

Concurrency and Parallelism

l  Concurrency is concerned with the
management of logically simultaneous
activities
§  best-fit job scheduling
§  event handling (GUI)
§  web server request

l  Parallelism is concerned with
performance of concurrent activities
§  weather forecasting
§  simulations

Cristina Nita-Rotaru Lecture 18/ Fall 2013 7

Parallelism

l  Parallelism:
§  Execution of concurrent tasks on platforms

capable of executing more than one task at a
time is referred to as “parallelism”

l  Parallelism integrates elements of
execution -- and associated overheads

l  We typically examine the correctness of
concurrent programs and performance of
parallel programs.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 8

Why Parallelism

l  Resources of a computer (processor, the
data-path, the memory subsystem, the
disk, and the network) represent
bottlenecks.

l  Parallelism alleviates all of these
bottlenecks.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 9

Parallelism Benefits for Memory

l  Most programs are memory bound – i.e.,
they operate at a small fraction of peak
CPU performance (10 – 20%)

l  They are, for the most part, waiting for
data to come from the memory.

l  Parallelism provides multiple pathways
to memory – effectively scaling memory
throughput as well!

Cristina Nita-Rotaru Lecture 18/ Fall 2013 10

Parallelism Benefits for IO

l  I/O (disks) represent major bottlenecks in
terms of their bandwidth and latency

l  Parallelism enables extraction of data from
multiple disks at the same time, effectively
scaling the throughput of the I/O

l  Example: large server farms (several
thousand computers) that ISPs maintain for
serving content (html, movies, music, mail)

Cristina Nita-Rotaru Lecture 18/ Fall 2013 11

Parallelism Benefits for CPU

l  The process itself is the most obvious
bottleneck.

l  Processors increasingly pack multiple
cores

Cristina Nita-Rotaru Lecture 18/ Fall 2013 12

Challenges

l  Coordination
l  Synchronization

l  Safety and liveness
§  Safety: consistency, nothing bad happens
§  Liveness: progress, something good happens

Cristina Nita-Rotaru Lecture 18/ Fall 2013 13

Multi-threaded Architectures

Shared Memory Model:
l  All threads have access to the same

global, shared memory
l  Threads also have their own private data
l  Programmers are responsible for

synchronizing access (protecting)
globally shared data

Cristina Nita-Rotaru Lecture 18/ Fall 2013 14

Thread-safeness

l  Thread-safeness: application's ability to execute
multiple threads simultaneously without
"clobbering" shared data or creating "race"
conditions.

l  Example:
§  An application creates several threads, each of which

makes a call to the same library routine:
§  This library routine accesses/modifies a global structure

or location in memory.
§  It is possible that the threads may try to modify this

global structure/memory location at the same time.
§  If the routine does not use synchronization constructs to

prevent data corruption, then it is not thread-safe.
Cristina Nita-Rotaru Lecture 18/ Fall 2013 15

PThreads and Portability

l  POSIX Threads, for short Pthreads, is a
POSIX standard for threads, defining an API
for creating and manipulating threads.

l  Although Pthreads API is a standard,
implementations can, and usually do, vary
§  a program that runs fine on one platform, may fail or

produce wrong results on another platform.
l  Example, the maximum number of threads

permitted, and the default thread stack size are
two important limits to consider when designing
a program.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 16

Pthreads API

l  Thread management - creating, joining
threads etc.

l  Mutexes
l  Condition variables
l  Synchronization between threads using

read-write locks and barriers

l  Must include pthread.h header and link with
pthread library

Cristina Nita-Rotaru Lecture 18/ Fall 2013 17

pthread_create

#include <pthread.h>
int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);

l  On success, pthread_create() returns 0; on
error, it returns an error number, and the
contents of *thread are undefined.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 18

pthread_create

#include <pthread.h>
int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);

l  *thread will be set to contain the id of the
new thread.

l  this id will be passed to other pthreads
functions that require a pthread identifier

Cristina Nita-Rotaru Lecture 18/ Fall 2013 19

pthread_create

#include <pthread.h>
int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);

l  attr structure whose contents are used at
thread creation time to determine attributes
for the new thread; initialized using
pthread_attr_init. If attr is NULL,
then the thread is created with default
attributes.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 20

pthread_create

#include <pthread.h>
int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);

l  start_routine is the function invoked
when the thread starts, it’s what the thread
does.

l  arg is the arguments passed to
start_routine, it can be NULL

Cristina Nita-Rotaru Lecture 18/ Fall 2013 21

pthread_exit

#include <pthread.h>
void pthread_exit(void *retval);

l  This function always succeeds.
l  To allow other threads to continue

execution, the main thread should
terminate by calling pthread_exit()
and not exit

Cristina Nita-Rotaru Lecture 18/ Fall 2013 22

Example

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define N 5

void* hello(void *id) {
 printf("Hello %ld\n", (long)id);
 pthread_exit(NULL);
}
int main (int argc, char *argv[]) {
 pthread_t threads[N];
 for(long t=0; t<N; t++){
 int rc = pthread_create(&threads[t], NULL,

 hello, (void *)t);
 if (rc) exit(-1);
 }
 pthread_exit(NULL);

}
 Cristina Nita-Rotaru Lecture 18/ Fall 2013 23

Multiple arguments
struct thread_data{
 int thread_id;
 int sum;
 char *message;

};
struct thread_data thread_data_array[NUM_THREADS];
void *PrintHello(void *threadarg){

 struct thread_data *my_data;
 ...
 my_data = (struct thread_data *) threadarg;
 taskid = my_data->thread_id;

 sum = my_data->sum;
 hello_msg = my_data->message;
 ...

}
int main (int argc, char *argv[]) {
 ...
 thread_data_array[t].thread_id = t;

 thread_data_array[t].sum = sum;
 thread_data_array[t].message = messages[t];
 err = pthread_create(&threads[t], NULL, PrintHello, (void *) &thread_data_array[t]);
 ...

}

Cristina Nita-Rotaru Lecture 18/ Fall 2013 24

Joining and Detaching Threads

l  pthread_join() blocks the calling
thread until the specified thread id
terminates

l  A joining thread can match one
pthread_join() call

l  A thread created as detached can never
be joined

l  Use the attr argument in a
pthread_create() call to set joinable
or detachable attributes

Cristina Nita-Rotaru Lecture 18/ Fall 2013 25

Pthread_join

#include <pthread.h>
int pthread_join(pthread_t thread, void * retval);

l  Waits for the thread identified by id thread

to finish. That thread must be joinable.
l  If retval is not NULL, then the result from

pthread_exit is returned there.
l  If multiple thread try to join the same thread

the result in undefined.
l  On success returns 0, on error a negative

number.

Cristina Nita-Rotaru Lecture 18/ Fall 2013 26

Example

#include <pthread.h>
...
#define NUM_THREADS! 4

void *BusyWork(void *t) { ... pthread_exit((void*) t); }
int main (int argc, char *argv[]) {
 pthread_t thread[NUM_THREADS];

 pthread_attr_t attr;
 ...
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 for(t=0; t<NUM_THREADS; t++) {
 printf("Main: creating thread %ld\n", t);
 err = pthread_create(&thread[t], &attr, BusyWork, (void *)t);

 ... }
 }
 pthread_attr_destroy(&attr);
 for(t=0; t<NUM_THREADS; t++) {

 err = pthread_join(thread[t], &status);
 ...
 printf("Main: completed join with thread %ld having a status
 of %ld\n",t,(long)status);

 }
 printf("Main: program completed. Exiting.\n");
 pthread_exit(NULL);

}

Cristina Nita-Rotaru Lecture 18/ Fall 2013 27

Mutual Exclusion

l  At most one thread can “acquire” a mutex at
any given time.
§  Once the acquiring thread “releases” the mutex,

another thread waiting for it can acquire it

l  Threads waiting for a mutex are blocked from
performing any other work

l  Logical errors that can occur when mutexes
are used incorrectly
§  Not used when they should be
§  Used when they shouldn’t be

Cristina Nita-Rotaru Lecture 18/ Fall 2013 28

Mutexes

l  Protect access to shared data
l  Methodology

§  Create and initialize a mutex variable
§  Several threads attempt to lock the mutex
§  One succeeds
§  Owner manipulates data protected by mutex
§  Owner unlocks
§  Another thread acquires the mutex, and repeats
§  Destroy the mutex

Cristina Nita-Rotaru Lecture 18/ Fall 2013 29

Challenges using mutexes

l  Make sure data is consistently protected
by the same set of mutexes

l  Make sure mutexes properly released
l  Ensure deadlock-freedom
l  Ensure progress (liveness)

Cristina Nita-Rotaru Lecture 18/ Fall 2013 30

